Some observations on the relation between dislocation substructure and power law breakdown in creep

[1]  M. Ashby,et al.  On the power-law creep equation , 1980 .

[2]  Y. Estrin,et al.  The effect of vacancy generation on plastic deformation , 1980 .

[3]  R. Stang,et al.  Effect of stress reductions on the creep behaviour and subgrain size in aluminum deformed at 573 K , 1979 .

[4]  A. Thompson Substructure strengthening mechanisms , 1977 .

[5]  Iain Le May,et al.  Creep, Viscoelasticity and Creep Fracture in Solids , 1976 .

[6]  S. Karashima,et al.  High-temperature creep rate and dislocation structure in a dilute copper-aluminium alloy , 1973 .

[7]  J. Moteff,et al.  Quantitative characterization of the substructure of AISI 316 stainless steel resulting from creep , 1973 .

[8]  J. Čadek,et al.  Internal stress and dislocation structure of aluminum in high-temperature creep , 1972 .

[9]  J. Čadek,et al.  Dislocation structure and applied, effective and internal stress in high-temperature creep of alpha iron , 1972 .

[10]  G. Pozzi,et al.  On the possibility of observing fluxons by transmission electron microscopy , 1972 .

[11]  F. Nichols On the stress dependence and activation area for creep , 1971 .

[12]  H. Oikawa,et al.  Transmission Electron Microscopy of Substructures Developed during High-Temperature Creep in Alpha-Iron , 1971 .

[13]  Oleg D. Sherby,et al.  Mechanical behavior of crystalline solids at elevated temperature , 1968 .

[14]  R. R. Hashiguti Lattice Defects and Their Interactions , 1967 .

[15]  C. Sellars,et al.  Recrystallization during creep of nickel , 1966 .

[16]  A. Keh,et al.  Substructure formation in iron during creep at 600°c , 1961 .

[17]  G. Saada Sur le durcissement dû à la recombinaison des dislocations , 1960 .