Grand canonical ensemble molecular dynamics simulations: Reformulation of extended system dynamics approaches

The extended system Hamiltonian for carrying out grand canonical ensemble molecular dynamics simulations is reformulated. This new Hamiltonian includes a generalized treatment of the reference state partition function of the total chemical potential that reproduces the ideal gas behavior and various previous partitionings of ideal and excess terms. Initial calculations are performed on a system of Lennard–Jones particles near the triple point and on liquid water at room temperature.

[1]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[2]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[3]  Bruce J. Palmer,et al.  Alternative Hamiltonian for molecular dynamics simulations in the grand canonical ensemble , 1995 .

[4]  The chemical potential of water: molecular dynamics computer simulation of the CF and SPC models , 1992 .

[5]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .

[6]  Kwong‐Yu Chan,et al.  A contact cavity‐biased method for grand canonical Monte Carlo simulations , 1994 .

[7]  Katherine S. Shing,et al.  A new simulation method for the grand canonical ensemble , 1992 .

[8]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[9]  D. J. Adams,et al.  Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid , 1975 .

[10]  B. Montgomery Pettitt,et al.  Dynamic simulations of water at constant chemical potential , 1992 .

[11]  L. Scriven,et al.  Efficient molecular simulation of chemical potentials , 1989 .

[12]  H. C. Andersen,et al.  Molecular dynamics simulations of a supercooled monatomic liquid and glass , 1984 .

[13]  Alexander P. Lyubartsev,et al.  Free energy calculations for Lennard-Jones systems and water using the expanded ensemble method A Monte Carlo and molecular dynamics simulation study , 1994 .

[14]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[15]  K. Chao,et al.  Monte Carlo simulation of the grand canonical ensemble , 1982 .

[16]  J. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  B. Montgomery Pettitt,et al.  Ideal chemical potential contribution in molecular dynamics simulations of the grand canonical ensemble , 1994 .

[18]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[19]  D. Nicholson,et al.  Monte Carlo grand canonical ensemble calculation in a gas-liquid transition region for 12-6 Argon , 1975 .

[20]  B. Montgomery Pettitt,et al.  Grand molecular dynamics: A method for open systems , 1991 .

[21]  B. Montgomery Pettitt,et al.  Molecular dynamics with a variable number of molecules , 1991 .

[22]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[23]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[24]  J. Hermans,et al.  Excess free energy of liquids from molecular dynamics simulations. Application to water models. , 1988, Journal of the American Chemical Society.

[25]  D. J. Adams,et al.  Chemical potential of hard-sphere fluids by Monte Carlo methods , 1974 .

[26]  J. G. Powles,et al.  Non-destructive molecular-dynamics simulation of the chemical potential of a fluid , 1982 .

[27]  Mihaly Mezei,et al.  Grand-canonical ensemble Monte Carlo study of dense liquid Lennard-Jones, soft spheres and water , 1987 .

[28]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[29]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[30]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[31]  K. Shing,et al.  The chemical potential from computer simulation , 1981 .

[32]  Jean-Pierre Hansen,et al.  Phase Transition of the Lennard-Jones System. II. High-Temperature Limit , 1970 .

[33]  B. Pettitt,et al.  Phase transitions of water at constant excess chemical potential : an application of grand molecular dynamics , 1994 .

[34]  J. P. Valleau,et al.  Umbrella‐sampling realization of ‘‘Widom’’ chemical potential estimation , 1993 .

[35]  D. Kofke,et al.  Molecular simulation in a pseudo grand canonical ensemble , 1995 .

[36]  J. Jellinek Dynamics for nonconservative systems: ergodicity beyond the microcanonical ensemble , 1988 .

[37]  M. Mezei Polynomial path for the calculation of liquid state free energies from computer simulations tested on liquid water , 1992 .