Inverse problems in geophysical applications

The papers in this volume describe recent accomplishments in the area, and also give pointers for future research, thereby prompting questions that advance the science and lead to open questions about the underlying mathematics. This volume should be of interest to mathematicians who wish to know more about this application area, and to geophysicists interested in theoretical analysis.

[1]  Robert L. Nowack,et al.  Fréchet derivatives for curved interfaces in the ray approximation , 1989 .

[2]  Roel Snieder,et al.  A unified approach to ray bending, ray perturbation and paraxial ray theories , 1993 .

[3]  Jiří Jech,et al.  First-order perturbation method for anisotropic media , 1989 .

[4]  Roel Snieder,et al.  PERTURBATION THEORY FOR TRAVEL TIMES , 1995 .

[5]  M. M. Popov,et al.  Computation of wave fields in inhomogeneous media — Gaussian beam approach , 1982 .

[6]  Uriel Frisch,et al.  WAVE PROPAGATION IN RANDOM MEDIA. , 1970 .

[7]  Roel Snieder,et al.  Ray perturbation theory for traveltimes and ray paths in 3-D heterogeneous media , 1992 .

[8]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[9]  Anne M. Trehu,et al.  Seismic attribute inversion for velocity and attenuation structure using data from the GLIMPCE Lake Superior experiment , 1997 .

[10]  S J Norton,et al.  Correcting for ray refraction in velocity and attenuation tomography: a perturbation approach. , 1982, Ultrasonic imaging.

[11]  Robert L. Nowack,et al.  Perturbation from isotropic to anisotropic heterogeneous media in the ray approximation , 1991 .

[12]  M. M. Popov,et al.  Computation of ray amplitudes in inhomogeneous media with curved interfaces , 1978 .

[13]  Raul Madariaga,et al.  Seismic waveform modeling in heterogeneous media by ray perturbation theory , 1987 .

[14]  Roel Snieder,et al.  The ambiguity in ray perturbation theory , 1993 .

[15]  Paul G. Richards,et al.  Quantitative Seismology: Theory and Methods , 1980 .

[16]  Jean Virieux,et al.  Ray perturbation theory for interfaces , 1989 .

[17]  R. Nowack,et al.  Linearized rays, amplitude and inversion , 1988 .

[18]  Lawrence W. Braile,et al.  Seismic imaging of upper crustal structure using travel times from the PASSCAL Ouachita Experiment , 1990 .

[19]  C. H. Chapman,et al.  Body-wave seismograms in inhomogeneous media using Maslov asymptotic theory , 1982 .

[20]  M. Taner,et al.  Complex seismic trace analysis , 1979 .

[21]  Beverley J. Moore Seismic ray theory for lithospheric structures with slight lateral variations , 1980 .

[22]  Vlastislav Červený,et al.  Effects of causal absorption on seismic body waves , 1982 .

[23]  V. Červený,et al.  Gaussian beam synthetic seismograms , 1985 .

[24]  Beverley J. Moore Seismic rays in media with slight lateral variation in velocity , 1991 .

[25]  V. Naroditsky Wave Propagation in Random Media , 1989 .

[26]  Jean Virieux,et al.  Comment on “The ambiguity in ray perturbation theory” by Roel Snieder and Malcolm Sambridge , 1994 .

[27]  Robert L. Nowack,et al.  Seismic attenuation values obtained from instantaneous‐frequency matching and spectral ratios , 1995 .

[28]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[29]  Filip Neele,et al.  The use of P wave amplitude data in a joint inversion with travel times for upper mantle velocity structure , 1993 .