A Unifying Review of Deep and Shallow Anomaly Detection

Deep learning approaches to anomaly detection (AD) have recently improved the state of the art in detection performance on complex data sets, such as large collections of images or text. These results have sparked a renewed interest in the AD problem and led to the introduction of a great variety of new methods. With the emergence of numerous such methods, including approaches based on generative models, one-class classification, and reconstruction, there is a growing need to bring methods of this field into a systematic and unified perspective. In this review, we aim to identify the common underlying principles and the assumptions that are often made implicitly by various methods. In particular, we draw connections between classic “shallow” and novel deep approaches and show how this relation might cross-fertilize or extend both directions. We further provide an empirical assessment of major existing methods that are enriched by the use of recent explainability techniques and present specific worked-through examples together with practical advice. Finally, we outline critical open challenges and identify specific paths for future research in AD.

[1]  Vishal M. Patel,et al.  One-Class Convolutional Neural Network , 2019, IEEE Signal Processing Letters.

[2]  Zhi-Hua Zhou,et al.  Isolation Forest , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[3]  Mohammad R. Jahanshahi,et al.  Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection , 2018 .

[4]  Gang Niu,et al.  Analysis of Learning from Positive and Unlabeled Data , 2014, NIPS.

[5]  Yi Liu,et al.  Minimum Enclosing and Maximum Excluding Machine for Pattern Description and Discrimination , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[6]  Olivier Bachem,et al.  Recent Advances in Autoencoder-Based Representation Learning , 2018, ArXiv.

[7]  Yedid Hoshen,et al.  Classification-Based Anomaly Detection for General Data , 2020, ICLR.

[8]  Steven Walfish,et al.  A review of statistical outlier methods , 2006 .

[9]  Toby P. Breckon,et al.  GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training , 2018, ACCV.

[10]  Valeria V. Krzhizhanovskaya,et al.  Anomaly detection in earth dam and levee passive seismic data using support vector machines and automatic feature selection , 2017, J. Comput. Sci..

[11]  Ronald M. Summers,et al.  ChestX-ray: Hospital-Scale Chest X-ray Database and Benchmarks on Weakly Supervised Classification and Localization of Common Thorax Diseases , 2019, Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics.

[12]  Sungzoon Cho,et al.  Variational Autoencoder based Anomaly Detection using Reconstruction Probability , 2015 .

[13]  Tonio Ball,et al.  Understanding Anomaly Detection with Deep Invertible Networks through Hierarchies of Distributions and Features , 2020, NeurIPS.

[14]  Rajib Rana,et al.  Phonocardiographic Sensing Using Deep Learning for Abnormal Heartbeat Detection , 2018, IEEE Sensors Journal.

[15]  Mahmood Fathy,et al.  Deep End-to-End One-Class Classifier , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[16]  Subutai Ahmad,et al.  Evaluating Real-Time Anomaly Detection Algorithms -- The Numenta Anomaly Benchmark , 2015, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA).

[17]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[18]  Katharina Morik,et al.  Anomaly Detection in Vertically Partitioned Data by Distributed Core Vector Machines , 2013, ECML/PKDD.

[19]  R. Tsay Outliers, Level Shifts, and Variance Changes in Time Series , 1988 .

[20]  Thomas G. Dietterich,et al.  Open Category Detection with PAC Guarantees , 2018, ICML.

[21]  J. Tchinda,et al.  Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. , 2006, Science.

[22]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[23]  Emanuele Ghelfi,et al.  A Survey on GANs for Anomaly Detection , 2019, ArXiv.

[24]  Volker Roth,et al.  Outlier Detection with One-class Kernel Fisher Discriminants , 2004, NIPS.

[25]  Seungjin Choi,et al.  Echo-state conditional variational autoencoder for anomaly detection , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[26]  Sanjay Ranka,et al.  Conditional Anomaly Detection , 2007, IEEE Transactions on Knowledge and Data Engineering.

[27]  Wojciech Samek,et al.  Explainable AI: Interpreting, Explaining and Visualizing Deep Learning , 2019, Explainable AI.

[28]  Ji Zhang,et al.  Advancements of Outlier Detection: A Survey , 2013, EAI Endorsed Trans. Scalable Inf. Syst..

[29]  Christian S. Jensen,et al.  Outlier Detection for Time Series with Recurrent Autoencoder Ensembles , 2019, IJCAI.

[30]  Nour Moustafa,et al.  UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set) , 2015, 2015 Military Communications and Information Systems Conference (MilCIS).

[31]  Michael I. Jordan,et al.  Robust Novelty Detection with Single-Class MPM , 2002, NIPS.

[32]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[33]  Mohiuddin Ahmed,et al.  Collective Anomaly Detection Techniques for Network Traffic Analysis , 2018 .

[34]  Yu Cheng,et al.  Deep Structured Energy Based Models for Anomaly Detection , 2016, ICML.

[35]  Georg Langs,et al.  Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly Detection in Retinal OCT , 2019, IEEE Transactions on Medical Imaging.

[36]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[37]  Cesare Alippi,et al.  Credit Card Fraud Detection: A Realistic Modeling and a Novel Learning Strategy , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[38]  V. Gómez,et al.  Input complexity and out-of-distribution detection with likelihood-based generative models , 2019, ICLR.

[39]  Dan Boneh,et al.  Ensemble Adversarial Training: Attacks and Defenses , 2017, ICLR.

[40]  Frann Cois Denis,et al.  PAC Learning from Positive Statistical Queries , 1998, ALT.

[41]  Don R. Hush,et al.  A Classification Framework for Anomaly Detection , 2005, J. Mach. Learn. Res..

[42]  Raymond T. Ng,et al.  Distance-based outliers: algorithms and applications , 2000, The VLDB Journal.

[43]  Deep Variational Semi-Supervised Novelty Detection , 2019, ArXiv.

[44]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[45]  Marius Kloft,et al.  Explainable Deep One-Class Classification , 2020, ICLR.

[46]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[47]  Alexander Binder,et al.  On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation , 2015, PloS one.

[48]  Yann LeCun,et al.  Deep multi-scale video prediction beyond mean square error , 2015, ICLR.

[49]  Jesse Davis,et al.  Fast Distance-Based Anomaly Detection in Images Using an Inception-Like Autoencoder , 2019, DS.

[50]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Christopher Ré,et al.  Snorkel: Rapid Training Data Creation with Weak Supervision , 2017, Proc. VLDB Endow..

[52]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[53]  Pascal Vincent,et al.  Contractive Auto-Encoders: Explicit Invariance During Feature Extraction , 2011, ICML.

[54]  Nassir Navab,et al.  Fusing Unsupervised and Supervised Deep Learning for White Matter Lesion Segmentation , 2019, MIDL.

[55]  Kwang-Hyun Cho,et al.  Level sets and minimum volume sets of probability density functions , 2003, Int. J. Approx. Reason..

[56]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[57]  Dong Xiang,et al.  Information-theoretic measures for anomaly detection , 2001, Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001.

[58]  Katrien van Driessen,et al.  A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.

[59]  Fuxin Li,et al.  Visualizing Deep Networks by Optimizing with Integrated Gradients , 2019, CVPR Workshops.

[60]  Konstantinos Kamnitsas,et al.  Unsupervised Lesion Detection in Brain CT using Bayesian Convolutional Autoencoders , 2018 .

[61]  Madhu Shukla,et al.  A survey of outlier detection algorithms for data streams , 2016, 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom).

[62]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[63]  Esteban Reyes,et al.  Transformation Based Deep Anomaly Detection in Astronomical Images , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[64]  Matthijs Douze,et al.  Deep Clustering for Unsupervised Learning of Visual Features , 2018, ECCV.

[65]  Sanjay Chawla,et al.  Robust, Deep and Inductive Anomaly Detection , 2017, ECML/PKDD.

[66]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[67]  Clayton D. Scott,et al.  Consistency of Robust Kernel Density Estimators , 2013, COLT.

[68]  Sebastian Nowozin,et al.  Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift , 2019, NeurIPS.

[69]  Robert X. Gao,et al.  Deep learning and its applications to machine health monitoring , 2019, Mechanical Systems and Signal Processing.

[70]  Aleksander Madry,et al.  Adversarial Examples Are Not Bugs, They Are Features , 2019, NeurIPS.

[71]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[72]  Arthur Zimek,et al.  On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study , 2016, Data Mining and Knowledge Discovery.

[73]  Rasmus Larsen,et al.  The Entire Regularization Path for the Support Vector Domain Description , 2006, MICCAI.

[74]  Quoc V. Le,et al.  Self-Training With Noisy Student Improves ImageNet Classification , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[75]  Klaus-Robert Müller,et al.  Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models , 2018, Pattern Recognit..

[76]  Robert D. Nowak,et al.  Learning Minimum Volume Sets , 2005, J. Mach. Learn. Res..

[77]  M. Herold,et al.  Near real-time disturbance detection using satellite image time series , 2012 .

[78]  Nathalie Japkowicz,et al.  A Novelty Detection Approach to Classification , 1995, IJCAI.

[79]  F. Arcadu,et al.  Deep learning algorithm predicts diabetic retinopathy progression in individual patients , 2019, npj Digital Medicine.

[80]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[81]  Steve Harenberg,et al.  Anomaly detection in dynamic networks: a survey , 2015 .

[82]  Erich Elsen,et al.  Deep Speech: Scaling up end-to-end speech recognition , 2014, ArXiv.

[83]  Sae-Young Chung,et al.  Novelty Detection Via Blurring , 2020, ICLR.

[84]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[85]  Malik Yousef,et al.  One-Class SVMs for Document Classification , 2002, J. Mach. Learn. Res..

[86]  Lei Shi,et al.  MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks , 2019, ICANN.

[87]  P. Laskov,et al.  Intrusion Detection in Unlabeled Data with Quarter-sphere Support Vector Machines , 2004, Prax. Inf.verarb. Kommun..

[88]  Heiko Hoffmann,et al.  Kernel PCA for novelty detection , 2007, Pattern Recognit..

[89]  Hongzhi Wang,et al.  Progress in Outlier Detection Techniques: A Survey , 2019, IEEE Access.

[90]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[91]  Vatsal Sharan,et al.  Efficient Anomaly Detection via Matrix Sketching , 2018, NeurIPS.

[92]  Alexandre Tkatchenko,et al.  Quantum-chemical insights from deep tensor neural networks , 2016, Nature Communications.

[93]  R. Blender,et al.  Identification of cyclone‐track regimes in the North Atlantic , 1997 .

[94]  Dawn Xiaodong Song,et al.  Lifelong Anomaly Detection Through Unlearning , 2019, CCS.

[95]  Weiying Xie,et al.  Discriminative Reconstruction Constrained Generative Adversarial Network for Hyperspectral Anomaly Detection , 2020, IEEE Transactions on Geoscience and Remote Sensing.

[96]  Bram van Ginneken,et al.  A survey on deep learning in medical image analysis , 2017, Medical Image Anal..

[97]  Yves Grandvalet,et al.  Support Vector Machines with a Reject Option , 2008, NIPS.

[98]  Randy C. Paffenroth,et al.  Anomaly Detection with Robust Deep Autoencoders , 2017, KDD.

[99]  Josef Schmee,et al.  Outliers in Statistical Data (2nd ed.) , 1986 .

[100]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[101]  Joachim Denzler,et al.  Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques , 2016 .

[102]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[103]  Fernando De la Torre,et al.  Robust Kernel Principal Component Analysis , 2008, NIPS.

[104]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[105]  Joachim M. Buhmann,et al.  On Relevant Dimensions in Kernel Feature Spaces , 2008, J. Mach. Learn. Res..

[106]  Matthias Hein,et al.  Towards neural networks that provably know when they don't know , 2020, ICLR.

[107]  Klemens Böhm,et al.  Generating Artificial Outliers in the Absence of Genuine Ones — A Survey , 2020, ACM Trans. Knowl. Discov. Data.

[108]  Mohiuddin Ahmed,et al.  A survey of network anomaly detection techniques , 2016, J. Netw. Comput. Appl..

[109]  Paolo Favaro,et al.  Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles , 2016, ECCV.

[110]  Ran El-Yaniv,et al.  Selective Classification for Deep Neural Networks , 2017, NIPS.

[111]  Barnabás Póczos,et al.  Group Anomaly Detection using Flexible Genre Models , 2011, NIPS.

[112]  Léon Bottou,et al.  Wasserstein GAN , 2017, ArXiv.

[113]  Quoc V. Le,et al.  Listen, attend and spell: A neural network for large vocabulary conversational speech recognition , 2015, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[114]  Zhe Gan,et al.  Adversarial Text Generation via Feature-Mover's Distance , 2018, NeurIPS.

[115]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[116]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[117]  Ivan Kobyzev,et al.  Normalizing Flows: An Introduction and Review of Current Methods , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[118]  Howard Wainer,et al.  Robust Regression & Outlier Detection , 1988 .

[119]  Diederik P. Kingma,et al.  An Introduction to Variational Autoencoders , 2019, Found. Trends Mach. Learn..

[120]  C. K. Chow,et al.  An optimum character recognition system using decision functions , 1957, IRE Trans. Electron. Comput..

[121]  Kristof T. Schütt,et al.  Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions , 2019, Nature Communications.

[122]  Guy Wolf,et al.  Fixing Bias in Reconstruction-based Anomaly Detection with Lipschitz Discriminators , 2019, 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP).

[123]  Marius Kloft,et al.  Image Anomaly Detection with Generative Adversarial Networks , 2018, ECML/PKDD.

[124]  Geoffrey E. Hinton,et al.  A Simple Framework for Contrastive Learning of Visual Representations , 2020, ICML.

[125]  Kuldeep Kumar,et al.  Robust Statistics, 2nd edn , 2011 .

[126]  Ben Poole,et al.  Weakly-Supervised Disentanglement Without Compromises , 2020, ICML.

[127]  Hongxing He,et al.  Outlier Detection Using Replicator Neural Networks , 2002, DaWaK.

[128]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[129]  Seiichi Uchida,et al.  A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data , 2016, PloS one.

[130]  Jing Liu,et al.  A Deep One-Class Neural Network for Anomalous Event Detection in Complex Scenes , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[131]  Zachary C. Lipton,et al.  The Doctor Just Won't Accept That! , 2017, 1711.08037.

[132]  Aruna Tiwari,et al.  Localized Multiple Kernel Learning for Anomaly Detection: One-class Classification , 2018, Knowl. Based Syst..

[133]  Aaron C. Courville,et al.  Out-of-Distribution Generalization via Risk Extrapolation (REx) , 2020, ICML.

[134]  Cewu Lu,et al.  Attribute Restoration Framework for Anomaly Detection , 2019, IEEE Transactions on Multimedia.

[135]  Kibok Lee,et al.  Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples , 2017, ICLR.

[136]  David Page,et al.  Area under the Precision-Recall Curve: Point Estimates and Confidence Intervals , 2013, ECML/PKDD.

[137]  Peng Wei,et al.  A PCB Dataset for Defects Detection and Classification , 2019, ArXiv.

[138]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[139]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[140]  Francesco Cricri,et al.  Clustering and Unsupervised Anomaly Detection with l2 Normalized Deep Auto-Encoder Representations , 2018, 2018 International Joint Conference on Neural Networks (IJCNN).

[141]  Martti Juhola,et al.  Informal identification of outliers in medical data , 2000 .

[142]  Chunhua Wang,et al.  Machine Learning and Deep Learning Methods for Cybersecurity , 2018, IEEE Access.

[143]  Steven Euijong Whang,et al.  A Survey on Data Collection for Machine Learning: A Big Data - AI Integration Perspective , 2018, IEEE Transactions on Knowledge and Data Engineering.

[144]  Herman Aguinis,et al.  Best-Practice Recommendations for Defining, Identifying, and Handling Outliers , 2013 .

[145]  Carsten Steger,et al.  MVTec AD — A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[146]  Zhi-Hua Zhou,et al.  A brief introduction to weakly supervised learning , 2018 .

[147]  P. Rousseeuw Multivariate estimation with high breakdown point , 1985 .

[148]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[149]  Jean-Philippe Vert,et al.  Consistency and Convergence Rates of One-Class SVMs and Related Algorithms , 2006, J. Mach. Learn. Res..

[150]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[151]  Keun Ho Ryu,et al.  Unsupervised Novelty Detection Using Deep Autoencoders with Density Based Clustering , 2018, Applied Sciences.

[152]  Subutai Ahmad,et al.  Unsupervised real-time anomaly detection for streaming data , 2017, Neurocomputing.

[153]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[154]  Alexander Binder,et al.  Simple and Effective Prevention of Mode Collapse in Deep One-Class Classification , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[155]  Gabriel Goh,et al.  Why Momentum Really Works , 2017 .

[156]  Yuki M. Asano,et al.  A critical analysis of self-supervision, or what we can learn from a single image , 2019, ICLR.

[157]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[158]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[159]  Cristiano Cervellera,et al.  QuantTree: Histograms for Change Detection in Multivariate Data Streams , 2018, ICML.

[160]  Lei Shu,et al.  DOC: Deep Open Classification of Text Documents , 2017, EMNLP.

[161]  Geoffrey E. Hinton,et al.  Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[162]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[163]  Klaus-Robert Müller,et al.  Covariate Shift Adaptation by Importance Weighted Cross Validation , 2007, J. Mach. Learn. Res..

[164]  Michael S. Brown,et al.  Noise Flow: Noise Modeling With Conditional Normalizing Flows , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[165]  Arthur Zimek,et al.  Discriminative features for identifying and interpreting outliers , 2014, 2014 IEEE 30th International Conference on Data Engineering.

[166]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[167]  Graham W. Taylor,et al.  Learning Confidence for Out-of-Distribution Detection in Neural Networks , 2018, ArXiv.

[168]  Saeed Amizadeh,et al.  Generic and Scalable Framework for Automated Time-series Anomaly Detection , 2015, KDD.

[169]  Sylvia Frühwirth-Schnatter,et al.  Finite Mixture and Markov Switching Models , 2006 .

[170]  Charu C. Aggarwal,et al.  Outlier Detection for Temporal Data: A Survey , 2014, IEEE Transactions on Knowledge and Data Engineering.

[171]  Andre Esteva,et al.  A guide to deep learning in healthcare , 2019, Nature Medicine.

[172]  Gang Hua,et al.  Unsupervised One-Class Learning for Automatic Outlier Removal , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[173]  Dawn Song,et al.  Natural Adversarial Examples , 2019, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[174]  G. Corrado,et al.  End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography , 2019, Nature Medicine.

[175]  Shinichi Nakajima,et al.  Minimizing Trust Leaks for Robust Sybil Detection , 2017, ICML.

[176]  Ira Assent,et al.  Local Outlier Detection with Interpretation , 2013, ECML/PKDD.

[177]  W. Polonik Measuring Mass Concentrations and Estimating Density Contour Clusters-An Excess Mass Approach , 1995 .

[178]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[179]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[180]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[181]  Motoaki Kawanabe,et al.  On robust parameter estimation in brain–computer interfacing , 2017, Journal of neural engineering.

[182]  H. Arp Discordant observations. , 1990, Science.

[183]  Thomas Brox,et al.  Anomaly Detection With Multiple-Hypotheses Predictions , 2018, ICML.

[184]  Salvatore J. Stolfo,et al.  Using artificial anomalies to detect unknown and known network intrusions , 2003, Knowledge and Information Systems.

[185]  Alexander A. Alemi,et al.  WAIC, but Why? Generative Ensembles for Robust Anomaly Detection , 2018 .

[186]  José M. Molina López,et al.  Anomaly Detection Based on Sensor Data in Petroleum Industry Applications , 2015, Sensors.

[187]  Christopher M. Bishop,et al.  Novelty detection and neural network validation , 1994 .

[188]  K-R Müller,et al.  Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning. , 2018, Seminars in cancer biology.

[189]  Alexander Binder,et al.  Deep Semi-Supervised Anomaly Detection , 2019, ICLR.

[190]  Thomas G. Dietterich,et al.  Sequential Feature Explanations for Anomaly Detection , 2019, ACM Trans. Knowl. Discov. Data.

[191]  Thomas Lengauer,et al.  Bioinformatics prediction of HIV coreceptor usage , 2007, Nature Biotechnology.

[192]  Aaron C. Courville,et al.  Detecting semantic anomalies , 2019, AAAI.

[193]  Chun-Hung Richard Lin,et al.  Intrusion detection system: A comprehensive review , 2013, J. Netw. Comput. Appl..

[194]  Motoaki Kawanabe,et al.  How to Explain Individual Classification Decisions , 2009, J. Mach. Learn. Res..

[195]  Shikha Agrawal,et al.  Survey on Anomaly Detection using Data Mining Techniques , 2015, KES.

[196]  Haimonti Dutta,et al.  Distributed Top-K Outlier Detection from Astronomy Catalogs using the DEMAC System , 2007, SDM.

[197]  James Bailey,et al.  Mining outlying aspects on numeric data , 2015, Data Mining and Knowledge Discovery.

[198]  Alexander Binder,et al.  Unmasking Clever Hans predictors and assessing what machines really learn , 2019, Nature Communications.

[199]  Shuchita Upadhyaya,et al.  Outlier Detection: Applications And Techniques , 2012 .

[200]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[201]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[202]  Eric Nalisnick,et al.  Normalizing Flows for Probabilistic Modeling and Inference , 2019, J. Mach. Learn. Res..

[203]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[204]  Christopher Leckie,et al.  Deep Multi-sphere Support Vector Data Description , 2020, SDM.

[205]  Javier M. Moguerza,et al.  Estimation of high-density regions using one-class neighbor machines , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[206]  Stephen J. Roberts,et al.  A Probabilistic Resource Allocating Network for Novelty Detection , 1994, Neural Computation.

[207]  Anazida Zainal,et al.  Fraud detection system: A survey , 2016, J. Netw. Comput. Appl..

[208]  A. Culyer,et al.  False-negative results in screening programmes: systematic review of impact and implications. , 2000, Health technology assessment.

[209]  Jérémie Jakubowicz,et al.  Scoring anomalies: a M-estimation formulation , 2013, AISTATS.

[210]  Vipin Kumar,et al.  Anomaly Detection for Discrete Sequences: A Survey , 2012, IEEE Transactions on Knowledge and Data Engineering.

[211]  R. Srikant,et al.  Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks , 2017, ICLR.

[212]  Ang Li,et al.  Hybrid Models for Open Set Recognition , 2020, ECCV.

[213]  Lovekesh Vig,et al.  Anomaly detection in ECG time signals via deep long short-term memory networks , 2015, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[214]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[215]  P. Qiu The Statistical Evaluation of Medical Tests for Classification and Prediction , 2005 .

[216]  Fabio Roli,et al.  Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning , 2018, CCS.

[217]  Charles Richter,et al.  Safe Visual Navigation via Deep Learning and Novelty Detection , 2017, Robotics: Science and Systems.

[218]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[219]  Armand Joulin,et al.  Unsupervised Learning by Predicting Noise , 2017, ICML.

[220]  Peter L. Bartlett,et al.  Classification with a Reject Option using a Hinge Loss , 2008, J. Mach. Learn. Res..

[221]  Ramesh Nallapati,et al.  OCGAN: One-Class Novelty Detection Using GANs With Constrained Latent Representations , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[222]  Sameer Singh,et al.  Novelty detection: a review - part 1: statistical approaches , 2003, Signal Process..

[223]  Rethinking Assumptions in Deep Anomaly Detection , 2020, ArXiv.

[224]  Ender Konukoglu,et al.  Unsupervised Lesion Detection via Image Restoration with a Normative Prior , 2018, MIDL.

[225]  Md. Rafiqul Islam,et al.  A survey of anomaly detection techniques in financial domain , 2016, Future Gener. Comput. Syst..

[226]  Jinoh Kim,et al.  A survey of deep learning-based network anomaly detection , 2017, Cluster Computing.

[227]  Thomas G. Dietterich,et al.  Benchmarking Neural Network Robustness to Common Corruptions and Perturbations , 2018, ICLR.

[228]  Heinrich Schulz,et al.  Anomaly Detection with Deep Perceptual Autoencoders , 2020, ArXiv.

[229]  Hans-Peter Kriegel,et al.  Local outlier detection reconsidered: a generalized view on locality with applications to spatial, video, and network outlier detection , 2012, Data Mining and Knowledge Discovery.

[230]  Ran El-Yaniv,et al.  Deep Anomaly Detection Using Geometric Transformations , 2018, NeurIPS.

[231]  Renjie Liao,et al.  Efficient Graph Generation with Graph Recurrent Attention Networks , 2019, NeurIPS.

[232]  A. Tsybakov On nonparametric estimation of density level sets , 1997 .

[233]  Simone Calderara,et al.  Latent Space Autoregression for Novelty Detection , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[234]  Ran El-Yaniv,et al.  Optimal Single-Class Classification Strategies , 2006, NIPS.

[235]  P. Protopapas,et al.  Finding outlier light curves in catalogues of periodic variable stars , 2005, astro-ph/0505495.

[236]  P. Baldi,et al.  Searching for exotic particles in high-energy physics with deep learning , 2014, Nature Communications.

[237]  Phedias Diamandis,et al.  Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction , 2018, BMC Bioinformatics.

[238]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[239]  Chuan Sheng Foo,et al.  Adversarially Learned Anomaly Detection , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[240]  Julien Cornebise,et al.  Weight Uncertainty in Neural Network , 2015, ICML.

[241]  Maurizio Filippone,et al.  A comparative evaluation of outlier detection algorithms: Experiments and analyses , 2018, Pattern Recognit..

[242]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[243]  Richard Baraniuk,et al.  Learning Minimum Volume Sets with Support Vector Machines , 2006, 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing.

[244]  Gerhard P. Hancke,et al.  A Survey of Anomaly Detection in Industrial Wireless Sensor Networks with Critical Water System Infrastructure as a Case Study , 2018, Sensors.

[245]  Robert P. W. Duin,et al.  Minimum spanning tree based one-class classifier , 2009, Neurocomputing.

[246]  Clayton D. Scott,et al.  Robust kernel density estimation , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[247]  Yee Whye Teh,et al.  Do Deep Generative Models Know What They Don't Know? , 2018, ICLR.

[248]  David A. Wagner,et al.  Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples , 2018, ICML.

[249]  Michael Kampffmeyer,et al.  Deep Divergence-Based Approach to Clustering , 2019, Neural Networks.

[250]  Dong Yu,et al.  Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[251]  Marius Kloft,et al.  Security analysis of online centroid anomaly detection , 2010, J. Mach. Learn. Res..

[252]  Ashok N. Srivastava,et al.  Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety case study , 2010, KDD.

[253]  J. Urgen Schmidhuber,et al.  Learning Factorial Codes by Predictability Minimization , 1992, Neural Computation.

[254]  Valentino Constantinou,et al.  Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding , 2018, KDD.

[255]  Sanjay Chawla,et al.  Anomaly Detection using One-Class Neural Networks , 2018, ArXiv.

[256]  Ira Assent,et al.  Explaining Outliers by Subspace Separability , 2013, 2013 IEEE 13th International Conference on Data Mining.

[257]  Joshua Glasser,et al.  Bridging the Gap: A Pragmatic Approach to Generating Insider Threat Data , 2013, 2013 IEEE Security and Privacy Workshops.

[258]  Brigitte Verdonk,et al.  Discovering novelty in spatio/temporal data using one-class support vector machines , 2009, 2009 International Joint Conference on Neural Networks.

[259]  Sanjay Chawla,et al.  Group Anomaly Detection using Deep Generative Models , 2018, ECML/PKDD.

[260]  Alexander Binder,et al.  Deep One-Class Classification , 2018, ICML.

[261]  B. Nachman,et al.  Anomaly detection with density estimation , 2020, Physical Review D.

[262]  Mark Chen,et al.  Language Models are Few-Shot Learners , 2020, NeurIPS.

[263]  Aditya Krishna Menon,et al.  A loss framework for calibrated anomaly detection , 2018, NeurIPS.

[264]  Ali Razavi,et al.  Generating Diverse High-Fidelity Images with VQ-VAE-2 , 2019, NeurIPS.

[265]  Yoshua Bengio,et al.  A Neural Probabilistic Language Model , 2003, J. Mach. Learn. Res..

[266]  Michael I. Jordan,et al.  Theoretically Principled Trade-off between Robustness and Accuracy , 2019, ICML.

[267]  Thomas G. Dietterich,et al.  Deep Anomaly Detection with Outlier Exposure , 2018, ICLR.

[268]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[269]  Shinichi Nakajima,et al.  How Much Can I Trust You? - Quantifying Uncertainties in Explaining Neural Networks , 2020, ArXiv.

[270]  Justin Gilmer,et al.  MNIST-C: A Robustness Benchmark for Computer Vision , 2019, ArXiv.

[271]  Alexander Lavin,et al.  Manifolds for Unsupervised Visual Anomaly Detection , 2020, ArXiv.

[272]  Kevin Gimpel,et al.  A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks , 2016, ICLR.

[273]  Lawrence K. Saul,et al.  Identifying suspicious URLs: an application of large-scale online learning , 2009, ICML '09.

[274]  Stanislav Pidhorskyi,et al.  Generative Probabilistic Novelty Detection with Adversarial Autoencoders , 2018, NeurIPS.

[275]  B. Ravi Kiran,et al.  An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos , 2018, J. Imaging.

[276]  E. O. Kiktenko,et al.  Revealing quantum chaos with machine learning , 2019, Physical Review B.

[277]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[278]  Bianca Zadrozny,et al.  Outlier detection by active learning , 2006, KDD '06.

[279]  Dimitris K. Iakovidis,et al.  Detecting and Locating Gastrointestinal Anomalies Using Deep Learning and Iterative Cluster Unification , 2018, IEEE Transactions on Medical Imaging.

[280]  Vishal M. Patel,et al.  Learning Deep Features for One-Class Classification , 2018, IEEE Transactions on Image Processing.

[281]  Zhuoqing Morley Mao,et al.  Categorization of Anomalies in Smart Manufacturing Systems to Support the Selection of Detection Mechanisms , 2017, IEEE Robotics and Automation Letters.

[282]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[283]  Yu Cheng,et al.  Unsupervised Sequential Outlier Detection With Deep Architectures , 2017, IEEE Transactions on Image Processing.

[284]  Leon A. Gatys,et al.  Image Style Transfer Using Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[285]  Anderson Rocha,et al.  Toward Open Set Recognition , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[286]  Klaus-Robert Müller,et al.  Machine learning analysis of DNA methylation profiles distinguishes primary lung squamous cell carcinomas from head and neck metastases , 2019, Science Translational Medicine.

[287]  Takafumi Kanamori,et al.  Statistical outlier detection using direct density ratio estimation , 2011, Knowledge and Information Systems.

[288]  Gyemin Lee,et al.  Nested Support Vector Machines , 2008, IEEE Transactions on Signal Processing.

[289]  Ghassan AlRegib,et al.  Backpropagated Gradient Representations for Anomaly Detection , 2020, ECCV.

[290]  Lucas C. Parra,et al.  Statistical Independence and Novelty Detection with Information Preserving Nonlinear Maps , 1996, Neural Computation.

[291]  Jinoh Kim,et al.  An Empirical Evaluation of Deep Learning for Network Anomaly Detection , 2018, 2018 International Conference on Computing, Networking and Communications (ICNC).

[292]  Haoyu Wang,et al.  Fast Incremental SVDD Learning Algorithm with the Gaussian Kernel , 2017, AAAI.

[293]  Elyas Sabeti,et al.  Data Discovery and Anomaly Detection Using Atypicality: Theory , 2017, IEEE Transactions on Information Theory.

[294]  Yu Xue,et al.  Generative adversarial network based telecom fraud detection at the receiving bank , 2018, Neural Networks.

[295]  Yuan-Hai Shao,et al.  Principal Component Analysis Based on T𝓁1-norm Maximization , 2020, ArXiv.

[296]  Aleksander Madry,et al.  Towards Deep Learning Models Resistant to Adversarial Attacks , 2017, ICLR.

[297]  Jung-Min Park,et al.  An overview of anomaly detection techniques: Existing solutions and latest technological trends , 2007, Comput. Networks.

[298]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[299]  Panos M. Pardalos,et al.  Interpreting rate-distortion of variational autoencoder and using model uncertainty for anomaly detection , 2020, Annals of Mathematics and Artificial Intelligence.

[300]  Tarun Gupta,et al.  A research study on unsupervised machine learning algorithms for early fault detection in predictive maintenance , 2018, 2018 5th International Conference on Industrial Engineering and Applications (ICIEA).

[301]  Peter M. Full,et al.  Medical Out-of-Distribution Analysis Challenge , 2020 .

[302]  John D. Lee,et al.  Trust in Automation: Designing for Appropriate Reliance , 2004, Hum. Factors.

[303]  Xiaofeng Liu,et al.  Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models , 2019, AAAI.

[304]  Fu Jie Huang,et al.  A Tutorial on Energy-Based Learning , 2006 .

[305]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[306]  Charles Blundell,et al.  Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles , 2016, NIPS.

[307]  John Platt,et al.  ALADIN: Active Learning of Anomalies to Detect Intrusion , 2008 .

[308]  Odej Kao,et al.  Self-Attentive Classification-Based Anomaly Detection in Unstructured Logs , 2020, 2020 IEEE International Conference on Data Mining (ICDM).

[309]  Alexei A. Efros,et al.  Colorful Image Colorization , 2016, ECCV.

[310]  Xiaojin Zhu,et al.  Semi-Supervised Learning , 2010, Encyclopedia of Machine Learning.

[311]  Marc Niethammer,et al.  Connectivity-Optimized Representation Learning via Persistent Homology , 2019, ICML.

[312]  Mahmood Fathy,et al.  Adversarially Learned One-Class Classifier for Novelty Detection , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[313]  Ender Konukoglu,et al.  Unsupervised Detection of Lesions in Brain MRI using constrained adversarial auto-encoders , 2018, ArXiv.

[314]  Thomas G. Dietterich,et al.  Feedback-Guided Anomaly Discovery via Online Optimization , 2018, KDD.

[315]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[316]  Don R. Hush,et al.  Network constraints and multi-objective optimization for one-class classification , 1996, Neural Networks.

[317]  Geoffrey E. Hinton,et al.  Deep Boltzmann Machines , 2009, AISTATS.

[318]  Thomas G. Dietterich,et al.  Discovering Anomalies by Incorporating Feedback from an Expert , 2020, ACM Trans. Knowl. Discov. Data.

[319]  Mehryar Mohri,et al.  Learning with Rejection , 2016, ALT.

[320]  Diane J. Cook,et al.  Graph-based anomaly detection , 2003, KDD '03.

[321]  Terrance E. Boult,et al.  Probability Models for Open Set Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[322]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[323]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[324]  John Sipple,et al.  Interpretable, Multidimensional, Multimodal Anomaly Detection with Negative Sampling for Detection of Device Failure , 2020, ICML.

[325]  Tomas Mikolov,et al.  Bag of Tricks for Efficient Text Classification , 2016, EACL.

[326]  Alexander A. Alemi,et al.  Fixing a Broken ELBO , 2017, ICML.

[327]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[328]  Robert P. W. Duin,et al.  Growing a multi-class classifier with a reject option , 2008, Pattern Recognit. Lett..

[329]  Maya R. Gupta,et al.  To Trust Or Not To Trust A Classifier , 2018, NeurIPS.

[330]  Inderjit S. Dhillon,et al.  Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.

[331]  Chong Wang,et al.  Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin , 2015, ICML.

[332]  Douglas M. Hawkins Identification of Outliers , 1980, Monographs on Applied Probability and Statistics.

[333]  David M. J. Tax,et al.  One-class classification , 2001 .

[334]  Leman Akoglu,et al.  Explaining anomalies in groups with characterizing subspace rules , 2017, Data Mining and Knowledge Discovery.

[335]  Jasper Snoek,et al.  Likelihood Ratios for Out-of-Distribution Detection , 2019, NeurIPS.

[336]  Marius Kloft,et al.  Self-Attentive, Multi-Context One-Class Classification for Unsupervised Anomaly Detection on Text , 2019, ACL.

[337]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[338]  T. C. Minter,et al.  Single-Class Classification , 1975 .

[339]  Pushmeet Kohli,et al.  Contrastive Training for Improved Out-of-Distribution Detection , 2020, ArXiv.

[340]  Yue Wu,et al.  DeepDetect: A Cascaded Region-Based Densely Connected Network for Seismic Event Detection , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[341]  Bernhard Schölkopf,et al.  A kernel view of the dimensionality reduction of manifolds , 2004, ICML.

[342]  Kurt Hornik,et al.  Neural networks and principal component analysis: Learning from examples without local minima , 1989, Neural Networks.

[343]  Asma Rabaoui,et al.  Using One-Class SVMs and Wavelets for Audio Surveillance , 2008, IEEE Transactions on Information Forensics and Security.

[344]  Yongsub Lim,et al.  RaPP: Novelty Detection with Reconstruction along Projection Pathway , 2020, ICLR.

[345]  W. Härdle Applied Nonparametric Regression , 1992 .

[346]  Vishal M. Patel,et al.  C2AE: Class Conditioned Auto-Encoder for Open-Set Recognition , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[347]  Ronan Collobert,et al.  wav2vec: Unsupervised Pre-training for Speech Recognition , 2019, INTERSPEECH.

[348]  James Theiler,et al.  Resampling approach for anomaly detection in multispectral images , 2003, SPIE Defense + Commercial Sensing.

[349]  Mohammad Norouzi,et al.  Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One , 2019, ICLR.

[350]  Weizhong Yan,et al.  On Accurate and Reliable Anomaly Detection for Gas Turbine Combustors: A Deep Learning Approach , 2019, ArXiv.

[351]  Hao Wu,et al.  Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning , 2018, Science.

[352]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[353]  Maria Spiropulu,et al.  Variational autoencoders for new physics mining at the Large Hadron Collider , 2018, Journal of High Energy Physics.

[354]  Sanjay Chawla,et al.  SLOM: a new measure for local spatial outliers , 2006, Knowledge and Information Systems.

[355]  Chuan-Sheng Foo,et al.  Towards Practical Unsupervised Anomaly Detection on Retinal Images , 2019, DART/MIL3ID@MICCAI.

[356]  R. Tsay,et al.  Outliers in multivariate time series , 2000 .

[357]  Anoop Cherian,et al.  GODS: Generalized One-Class Discriminative Subspaces for Anomaly Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[358]  Hong Zhang,et al.  Facial expression recognition via learning deep sparse autoencoders , 2018, Neurocomputing.

[359]  David A. Clifton,et al.  A review of novelty detection , 2014, Signal Process..

[360]  P. Huynh,et al.  The false-negative mammogram. , 1998, Radiographics : a review publication of the Radiological Society of North America, Inc.

[361]  Bernhard Schölkopf,et al.  Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations , 2018, ICML.

[362]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[363]  Chandan Srivastava,et al.  Support Vector Data Description , 2011 .

[364]  Mehrisadat Makki Alamdari,et al.  On Structural Health Monitoring Using Tensor Analysis and Support Vector Machine with Artificial Negative Data , 2016, CIKM.

[365]  Siddhartha Bhattacharyya,et al.  Data mining for credit card fraud: A comparative study , 2011, Decis. Support Syst..

[366]  Francesco Piazza,et al.  Acoustic novelty detection with adversarial autoencoders , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[367]  Osmar R. Zaïane,et al.  Sentiment Analysis on Twitter to Improve Time Series Contextual Anomaly Detection for Detecting Stock Market Manipulation , 2017, DaWaK.

[368]  Shehroz S. Khan,et al.  One-class classification: taxonomy of study and review of techniques , 2013, The Knowledge Engineering Review.

[369]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[370]  Wojciech Samek,et al.  Methods for interpreting and understanding deep neural networks , 2017, Digit. Signal Process..

[371]  Klaus-Robert Müller,et al.  Explanations can be manipulated and geometry is to blame , 2019, NeurIPS.

[372]  Ling Huang,et al.  In-Network PCA and Anomaly Detection , 2006, NIPS.

[373]  Geoffrey E. Hinton,et al.  Massively Parallel Architectures for AI: NETL, Thistle, and Boltzmann Machines , 1983, AAAI.

[374]  J. E. Jackson,et al.  Control Procedures for Residuals Associated With Principal Component Analysis , 1979 .

[375]  Raghavendra Chalapathy University of Sydney,et al.  Deep Learning for Anomaly Detection: A Survey , 2019, ArXiv.

[376]  Klaus-Robert Müller,et al.  From outliers to prototypes: Ordering data , 2006, Neurocomputing.

[377]  Huangang Wang,et al.  L1 norm based KPCA for novelty detection , 2013, Pattern Recognit..

[378]  Marius Kloft,et al.  Active and Semi-supervised Data Domain Description , 2009, ECML/PKDD.

[379]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[380]  P. Rigollet,et al.  Optimal rates for plug-in estimators of density level sets , 2006, math/0611473.

[381]  Geoffrey E. Hinton Connectionist Learning Procedures , 1989, Artif. Intell..

[382]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[383]  Gunnar Rätsch,et al.  Constructing Boosting Algorithms from SVMs: An Application to One-Class Classification , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[384]  Bernhard Schölkopf,et al.  One-Class Support Measure Machines for Group Anomaly Detection , 2013, UAI.

[385]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD '00.

[386]  Anne Sabourin,et al.  On Anomaly Ranking and Excess-Mass Curves , 2015, AISTATS.

[387]  Venkatesh Saligrama,et al.  Anomaly Detection with Score functions based on Nearest Neighbor Graphs , 2009, NIPS.

[388]  Sridhar Ramaswamy,et al.  Efficient algorithms for mining outliers from large data sets , 2000, SIGMOD '00.

[389]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[390]  Leroy Cronin,et al.  How to explore chemical space using algorithms and automation , 2019, Nature Reviews Chemistry.

[391]  Christopher M. Bishop,et al.  Bayesian PCA , 1998, NIPS.

[392]  Dana H. Ballard,et al.  Modular Learning in Neural Networks , 1987, AAAI.

[393]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[394]  Kimin Lee,et al.  Using Pre-Training Can Improve Model Robustness and Uncertainty , 2019, ICML.

[395]  Osmar R. Zaïane,et al.  Time series contextual anomaly detection for detecting market manipulation in stock market , 2015, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[396]  Sergios Theodoridis,et al.  Machine Learning: A Bayesian and Optimization Perspective , 2015 .

[397]  Nikos Komodakis,et al.  Unsupervised Representation Learning by Predicting Image Rotations , 2018, ICLR.

[398]  Carl E. Rasmussen,et al.  The Need for Open Source Software in Machine Learning , 2007, J. Mach. Learn. Res..

[399]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[400]  Wojciech Samek,et al.  Toward Interpretable Machine Learning: Transparent Deep Neural Networks and Beyond , 2020, ArXiv.

[401]  Klaus-Robert Müller,et al.  From Clustering to Cluster Explanations via Neural Networks , 2019, IEEE transactions on neural networks and learning systems.

[402]  Léon Bottou,et al.  Wasserstein Generative Adversarial Networks , 2017, ICML.

[403]  Hamid R. Rabiee,et al.  A Bayesian Approach to the Data Description Problem , 2012, AAAI.

[404]  Danai Koutra,et al.  Graph based anomaly detection and description: a survey , 2014, Data Mining and Knowledge Discovery.

[405]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[406]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[407]  Harsha Vardhan Simhadri,et al.  DROCC: Deep Robust One-Class Classification , 2020, ICML.

[408]  Julien Marzat,et al.  Model-based fault diagnosis for aerospace systems: a survey , 2012 .

[409]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[410]  Chuan Sheng Foo,et al.  Efficient GAN-Based Anomaly Detection , 2018, ArXiv.

[411]  Charu C. Aggarwal,et al.  Outlier Detection with Autoencoder Ensembles , 2017, SDM.

[412]  Ali S. Hadi,et al.  Detection of outliers , 2009 .

[413]  Hans-Peter Kriegel,et al.  A survey on unsupervised outlier detection in high‐dimensional numerical data , 2012, Stat. Anal. Data Min..

[414]  Jiquan Ngiam,et al.  Learning Deep Energy Models , 2011, ICML.

[415]  Gunnar Rätsch,et al.  Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.

[416]  Shinichi Nakajima,et al.  Support Vector Data Descriptions and $k$ -Means Clustering: One Class? , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[417]  B. Minaei-Bidgoli,et al.  Using Data Mining to Detect Health Care Fraud and Abuse: A Review of Literature , 2014, Global journal of health science.

[418]  Jugal K. Kalita,et al.  A Survey of Outlier Detection Methods in Network Anomaly Identification , 2011, Comput. J..

[419]  Klaus-Robert Müller,et al.  Efficient BackProp , 2012, Neural Networks: Tricks of the Trade.

[420]  Brendan J. Frey,et al.  k-Sparse Autoencoders , 2013, ICLR.

[421]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[422]  Sameer Singh,et al.  Novelty detection: a review - part 2: : neural network based approaches , 2003, Signal Process..

[423]  Lorenz Wellhausen,et al.  Safe Robot Navigation Via Multi-Modal Anomaly Detection , 2020, IEEE Robotics and Automation Letters.

[424]  Andrew H. Beck,et al.  Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer , 2017, JAMA.

[425]  Michael Lindenbaum,et al.  q-OCSVM: A q-Quantile Estimator for High-Dimensional Distributions , 2013, NIPS.

[426]  David J. Hand,et al.  Classification and Anomaly Detection for Astronomical Survey Data , 2013 .

[427]  David J.C. Mackay,et al.  Density networks , 2000 .

[428]  Charles C. Kemp,et al.  A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-Based Variational Autoencoder , 2017, IEEE Robotics and Automation Letters.

[429]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[430]  Kyogu Lee,et al.  Rare Sound Event Detection Using 1D Convolutional Recurrent Neural Networks , 2017, DCASE.

[431]  Aleksander Madry,et al.  On Evaluating Adversarial Robustness , 2019, ArXiv.

[432]  W. Polonik Minimum volume sets and generalized quantile processes , 1997 .

[433]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.

[434]  Yuma Koizumi,et al.  Unsupervised Detection of Anomalous Sound Based on Deep Learning and the Neyman–Pearson Lemma , 2018, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[435]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[436]  Honglak Lee,et al.  Unsupervised feature learning for audio classification using convolutional deep belief networks , 2009, NIPS.

[437]  Aaron C. Courville,et al.  Out-of-Distribution Generalization via Risk Extrapolation (REx) , 2020, International Conference on Machine Learning.

[438]  Sameer Antani,et al.  Ensemble Deep Learning for Cervix Image Selection toward Improving Reliability in Automated Cervical Precancer Screening , 2020, Diagnostics.

[439]  Andrew Gordon Wilson,et al.  Why Normalizing Flows Fail to Detect Out-of-Distribution Data , 2020, NeurIPS.

[440]  Tudor I. Oprea,et al.  Chemical space navigation in lead discovery. , 2002, Current opinion in chemical biology.

[441]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[442]  Neil D. Lawrence,et al.  Dataset Shift in Machine Learning , 2009 .

[443]  G. Box Science and Statistics , 1976 .

[444]  Pascal Poncelet,et al.  Anomaly detection in monitoring sensor data for preventive maintenance , 2011, Expert Syst. Appl..

[445]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[446]  Navdeep Jaitly,et al.  Adversarial Autoencoders , 2015, ArXiv.

[447]  Yang Feng,et al.  Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications , 2018, WWW.

[448]  Aidong Men,et al.  A Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data , 2017, Comput. Intell. Neurosci..

[449]  Bo Yang,et al.  Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering , 2016, ICML.

[450]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[451]  Johannes Gehrke,et al.  Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission , 2015, KDD.

[452]  Byunghan Lee,et al.  Deep learning in bioinformatics , 2016, Briefings Bioinform..

[453]  Seth Flaxman,et al.  European Union Regulations on Algorithmic Decision-Making and a "Right to Explanation" , 2016, AI Mag..

[454]  Shai Ben-David,et al.  Learning Distributions by Their Density Levels: A Paradigm for Learning without a Teacher , 1997, J. Comput. Syst. Sci..

[455]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[456]  M. Otto,et al.  Outliers in Time Series , 1972 .

[457]  Kibok Lee,et al.  A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks , 2018, NeurIPS.

[458]  Terrance E. Boult,et al.  Towards Open Set Deep Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[459]  Jos van Hillegersberg,et al.  Outlier detection in healthcare fraud: A case study in the Medicaid dental domain , 2016, Int. J. Account. Inf. Syst..

[460]  Geoffrey E. Hinton,et al.  Acoustic Modeling Using Deep Belief Networks , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[461]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[462]  Klaus-Robert Muller,et al.  The Clever Hans Effect in Anomaly Detection , 2020, ArXiv.

[463]  Alessandro Rinaldo,et al.  Statistical Analysis of Nearest Neighbor Methods for Anomaly Detection , 2019, NeurIPS.

[464]  Nontawat Charoenphakdee,et al.  On the Calibration of Multiclass Classification with Rejection , 2019, NeurIPS.

[465]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[466]  Eric T. Nalisnick,et al.  Detecting Out-of-Distribution Inputs to Deep Generative Models Using Typicality , 2019 .

[467]  Siegfried Wahl,et al.  Leveraging uncertainty information from deep neural networks for disease detection , 2016, Scientific Reports.

[468]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[469]  Rose Yu,et al.  GLAD: group anomaly detection in social media analysis , 2014, ACM Trans. Knowl. Discov. Data.

[470]  Gilles Blanchard,et al.  Semi-Supervised Novelty Detection , 2010, J. Mach. Learn. Res..

[471]  Kilian Q. Weinberger,et al.  On Calibration of Modern Neural Networks , 2017, ICML.

[472]  Svetha Venkatesh,et al.  Memorizing Normality to Detect Anomaly: Memory-Augmented Deep Autoencoder for Unsupervised Anomaly Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[473]  T. Cover,et al.  Rate Distortion Theory , 2001 .

[474]  Wanli Zuo,et al.  Learning from Positive and Unlabeled Examples: A Survey , 2008, 2008 International Symposiums on Information Processing.

[475]  Samy Bengio,et al.  Generating Sentences from a Continuous Space , 2015, CoNLL.

[476]  Motoaki Kawanabe,et al.  Machine Learning in Non-Stationary Environments - Introduction to Covariate Shift Adaptation , 2012, Adaptive computation and machine learning.

[477]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[478]  Yaoliang Yu,et al.  Multivariate Triangular Quantile Maps for Novelty Detection , 2019, NeurIPS.

[479]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[480]  David J. Hand,et al.  Statistical fraud detection: A review , 2002 .

[481]  Terrance E. Boult,et al.  Reducing Network Agnostophobia , 2018, NeurIPS.

[482]  Robert P. W. Duin,et al.  Support vector domain description , 1999, Pattern Recognit. Lett..

[483]  Luca Benini,et al.  Anomaly Detection using Autoencoders in High Performance Computing Systems , 2018, DDC@AI*IA.

[484]  Huawen Liu,et al.  Recent Progress of Anomaly Detection , 2019, Complex..

[485]  Julien Cornebise,et al.  Weight Uncertainty in Neural Networks , 2015, ArXiv.

[486]  Dawn Song,et al.  Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty , 2019, NeurIPS.

[487]  Bo Zong,et al.  Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection , 2018, ICLR.

[488]  Yoshua Bengio,et al.  NICE: Non-linear Independent Components Estimation , 2014, ICLR.

[489]  M. Shyu,et al.  A Novel Anomaly Detection Scheme Based on Principal Component Classifier , 2003 .

[490]  Stephan Günnemann,et al.  NetGAN: Generating Graphs via Random Walks , 2018, ICML.

[491]  Thomas G. Dietterich,et al.  Systematic construction of anomaly detection benchmarks from real data , 2013, ODD '13.

[492]  Franck Dufrenois,et al.  A One-Class Kernel Fisher Criterion for Outlier Detection , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[493]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[494]  Erkki Oja,et al.  Principal components, minor components, and linear neural networks , 1992, Neural Networks.

[495]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[496]  David A. Wagner,et al.  Towards Evaluating the Robustness of Neural Networks , 2016, 2017 IEEE Symposium on Security and Privacy (SP).

[497]  Jianping Yin,et al.  Effective End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network , 2019, NeurIPS.

[498]  R. Tibshirani,et al.  Outlier sums for differential gene expression analysis. , 2007, Biostatistics.

[499]  Cewu Lu,et al.  Inverse-Transform AutoEncoder for Anomaly Detection , 2019, ArXiv.

[500]  M. M. Moya,et al.  One-class classifier networks for target recognition applications , 1993 .

[501]  Nhien-An Le-Khac,et al.  Collective Anomaly Detection Based on Long Short-Term Memory Recurrent Neural Networks , 2016, FDSE.

[502]  Ammar Belatreche,et al.  An experimental evaluation of novelty detection methods , 2014, Neurocomputing.

[503]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[504]  Georg Langs,et al.  Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery , 2017, IPMI.

[505]  Ron J. Weiss,et al.  Unsupervised Speech Representation Learning Using WaveNet Autoencoders , 2019, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[506]  Andrew W. Moore,et al.  Bayesian Network Anomaly Pattern Detection for Disease Outbreaks , 2003, ICML.

[507]  Jinwoo Shin,et al.  CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances , 2020, NeurIPS.

[508]  Erik Marchi,et al.  A novel approach for automatic acoustic novelty detection using a denoising autoencoder with bidirectional LSTM neural networks , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[509]  Roman Vershynin,et al.  High-Dimensional Probability , 2018 .

[510]  L. Devroye,et al.  Nonparametric density estimation : the L[1] view , 1987 .

[511]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[512]  Tomas Mikolov,et al.  Enriching Word Vectors with Subword Information , 2016, TACL.

[513]  Donald H. Rumsfeld Known and Unknown: A Memoir , 2011 .

[514]  Vipin Kumar,et al.  Feature bagging for outlier detection , 2005, KDD '05.

[515]  Aapo Hyvärinen,et al.  Noise-contrastive estimation: A new estimation principle for unnormalized statistical models , 2010, AISTATS.

[516]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[517]  Thomas G. Dietterich,et al.  A Meta-Analysis of the Anomaly Detection Problem , 2015 .

[518]  Venu Govindaraju,et al.  Why Regularized Auto-Encoders learn Sparse Representation? , 2015, ICML.

[519]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[520]  F. Y. Edgeworth,et al.  XLI. On discordant observations , 1887 .

[521]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[522]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[523]  Qiang Liu,et al.  SU-IDS: A Semi-supervised and Unsupervised Framework for Network Intrusion Detection , 2018, ICCCS.

[524]  Abhishek Das,et al.  Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[525]  John Schulman,et al.  Concrete Problems in AI Safety , 2016, ArXiv.

[526]  Lovekesh Vig,et al.  LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection , 2016, ArXiv.

[527]  Andrew W. Moore,et al.  Active Learning for Anomaly and Rare-Category Detection , 2004, NIPS.

[528]  C. K. Chow,et al.  On optimum recognition error and reject tradeoff , 1970, IEEE Trans. Inf. Theory.

[529]  Yoshua Bengio,et al.  Learning deep representations by mutual information estimation and maximization , 2018, ICLR.

[530]  Robert Pless,et al.  A Survey of Manifold Learning for Images , 2009, IPSJ Trans. Comput. Vis. Appl..

[531]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[532]  Smita Krishnaswamy,et al.  A Lipschitz-constrained anomaly discriminator framework , 2019, ArXiv.

[533]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[534]  Volker Roth,et al.  Kernel Fisher Discriminants for Outlier Detection , 2006, Neural Computation.

[535]  Sudipto Guha,et al.  Robust Random Cut Forest Based Anomaly Detection on Streams , 2016, ICML.

[536]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[537]  Thomas S. Ferguson,et al.  On the Rejection of Outliers , 1961 .

[538]  Yedid Hoshen,et al.  Deep Nearest Neighbor Anomaly Detection , 2020, ArXiv.

[539]  Michael Brady,et al.  Novelty detection for the identification of masses in mammograms , 1995 .

[540]  Christopher Leckie,et al.  High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning , 2016, Pattern Recognit..

[541]  Alexandre Lacoste,et al.  Neural Autoregressive Flows , 2018, ICML.

[542]  Nojun Kwak,et al.  Principal Component Analysis Based on L1-Norm Maximization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[543]  Richard Socher,et al.  Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems , 2019, ACL.

[544]  Anton van den Hengel,et al.  Deep Anomaly Detection with Deviation Networks , 2019, KDD.

[545]  Ankur Taly,et al.  Axiomatic Attribution for Deep Networks , 2017, ICML.

[546]  F. E. Grubbs Procedures for Detecting Outlying Observations in Samples , 1969 .

[547]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[548]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[549]  Ali Farhadi,et al.  Unsupervised Deep Embedding for Clustering Analysis , 2015, ICML.

[550]  Oriol Vinyals,et al.  Neural Discrete Representation Learning , 2017, NIPS.

[551]  Gyemin Lee,et al.  The One Class Support Vector Machine Solution Path , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[552]  Marius Kloft,et al.  Toward Supervised Anomaly Detection , 2014, J. Artif. Intell. Res..

[553]  Douglas M. Hawkins,et al.  The Detection of Errors in Multivariate Data Using Principal Components , 1974 .

[554]  Vivekanand Gopalkrishnan,et al.  Mining Outliers with Ensemble of Heterogeneous Detectors on Random Subspaces , 2010, DASFAA.

[555]  Georg Langs,et al.  f‐AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks , 2019, Medical Image Anal..

[556]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[557]  Joseph Keshet,et al.  Out-of-Distribution Detection using Multiple Semantic Label Representations , 2018, NeurIPS.

[558]  O. Papaspiliopoulos High-Dimensional Probability: An Introduction with Applications in Data Science , 2020 .

[559]  Andrew W. Moore,et al.  What's Strange About Recent Events (WSARE): An Algorithm for the Early Detection of Disease Outbreaks , 2005, J. Mach. Learn. Res..

[560]  Victoria J. Hodge,et al.  A Survey of Outlier Detection Methodologies , 2004, Artificial Intelligence Review.

[561]  Alexei A. Efros,et al.  Unsupervised Visual Representation Learning by Context Prediction , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[562]  Lifeng Shen,et al.  Timeseries Anomaly Detection using Temporal Hierarchical One-Class Network , 2020, NeurIPS.

[563]  James Bailey,et al.  Discovering outlying aspects in large datasets , 2016, Data Mining and Knowledge Discovery.

[564]  Weakly Supervised Disentanglement with Guarantees , 2019, ICLR.

[565]  Regina Barzilay,et al.  Junction Tree Variational Autoencoder for Molecular Graph Generation , 2018, ICML.

[566]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[567]  Alex Kendall,et al.  What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? , 2017, NIPS.