Charge Instabilities in Lateral Super‐Lattices under Conditions of Population Inversion

Lateral super-lattices along the surface of a semiconductor can generate mini-band structure for distances of the order of 1000 A or less. The detailed gap structure depends noticeably on the charge in the structure. Under conditions of strong population inversion, synergetic switching behavior and space-charge waves can be expected to occur. Ein laterales Ubergitter an der Oberflache eines Halbleiters kann eine Mini-Bandstruktur fur Abstande der Grosenordnung 1000 A oder kleiner erzeugen. Die genaue Gap-Struktur hangt wesentlich von der Ladung in der Struktur ab. Unter Bedingungen der strengen Besetzungsumkehr kann das Auftreten eines synergetischen Schaltverhaltens und von Raumladungswellen erwartet werden.

[1]  R. Peierls,et al.  Quantum theory of solids , 1956 .

[2]  F. D. Salvo Charge Density Waves in Layered Compounds , 1976 .

[3]  H. Y. Fan Temperature Dependence of the Energy Gap in Semiconductors , 1951 .

[4]  D. Tsui,et al.  Voltage-Tunable Far-Infrared Emission from Si Inversion Layers , 1976 .

[5]  Alan B. Fowler,et al.  Magneto-Oscillatory Conductance in Silicon Surfaces , 1966 .

[6]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[7]  E. Gornik Recombination Radiation from Impact-Ionized Shallow Donors in n-Type InSb , 1972 .

[8]  R. Dingle,et al.  Direct Observation of Superlattice Formation in a Semiconductor Heterostructure , 1975 .

[9]  H. C. Casey,et al.  Concentration dependence of the absorption coefficient for n− and p−type GaAs between 1.3 and 1.6 eV , 1975 .

[10]  F. J. Ohkawa Electric Break through in N-Channel Si Inversion Layer Tilted from (100) Surface , 1978 .

[11]  L. Brillouin,et al.  Wave Propagation in Periodic Structures , 1946 .

[12]  A. Heeger,et al.  Metal-Insulator Transition and Antiferromagnetism in a One-Dimensional Organic Solid , 1972 .

[13]  V. Heine,et al.  Effect of electron-hole pairs on phonon frequencies in Si related to temperature dependence of band gaps , 1976 .

[14]  L. Esaki,et al.  Abstract: New semiconductor heterostructures , 1978 .

[15]  A. Overhauser Observability of Charge-Density Waves by Neutron Diffraction , 1971 .

[16]  Frank Stern,et al.  Quantum properties of surface space-charge layers , 1973 .

[17]  A. Lakhani,et al.  Evidence for a superlattice at Si–SiOx interface , 1977 .

[18]  C. Haas Infrared Absorption in Heavily Doped n -Type Germanium , 1962 .

[19]  A. N. Broers,et al.  250‐Å linewidths with PMMA electron resist , 1978 .

[20]  Leroy L. Chang,et al.  New Transport Phenomenon in a Semiconductor "Superlattice" , 1974 .

[21]  J. C. Inkson The effect of electron interaction on the band gap of extrinsic semiconductors , 1976 .

[22]  W. Kohn Image of the Fermi Surface in the Vibration Spectrum of a Metal , 1959 .

[23]  K. Hess,et al.  The charge-handling capacity of buried-channel structures under hot-electron conditions , 1980, IEEE Transactions on Electron Devices.

[24]  A. C. Gossard,et al.  GaAs/AlAs layered films , 1979 .

[25]  F. Disalvo Charge Density Waves in Layered Compounds , 1977 .