Entanglement, mixedness, and q-entropies

Abstract We revisit the relationship between entanglement and purity of states of two-qubits systems, using the  q -entropies as measures of the degree of mixture. The  q -entropies depend on the density matrix eigenvalues p i through the quantity ω q =∑ i p i q . Renyi's measures constitutes particular instances of these entropies. We pay particular attention to the case q =2 and to the limit case q →∞. We provide analytical support to numerical results recently reported in the literature.

[1]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[2]  S Bose,et al.  Communication capacity of quantum computation. , 2000, Physical review letters.

[3]  P. Landsberg,et al.  Distributions and channel capacities in generalized statistical mechanics , 1998 .

[4]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[5]  K. Życzkowski,et al.  Composed ensembles of random unitary matrices , 1997, chao-dyn/9707006.

[6]  Ryszard Horodecki,et al.  Entanglement processing and statistical inference: The Jaynes principle can produce fake entanglement , 1999 .

[7]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[8]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[9]  V. Vedral,et al.  Mixedness and teleportation , 2000 .

[10]  W. Munro,et al.  Maximizing the entanglement of two mixed qubits , 2001, quant-ph/0103113.

[11]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[12]  T. Hiroshima,et al.  Maximally entangled mixed states under nonlocal unitary operations in two qubits , 2000 .

[13]  K. Życzkowski On the volume of the set of mixed entangled states II , 1999, quant-ph/9902050.

[14]  A. Plastino,et al.  Nonextensive thermostatistics and the H theorem. , 2001, Physical review letters.

[15]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[16]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[17]  A. Chatterjee,et al.  Introduction to Quantum Computation , 2003 .

[18]  P. Zanardi,et al.  Entangling power of quantum evolutions , 2000, quant-ph/0005031.

[19]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .