Solving nonlinear polynomial systems in the barycentric Bernstein basis

We present a method for solving arbitrary systems of N nonlinear polynomials in n variables over an n-dimensional simplicial domain based on polynomial representation in the barycentric Bernstein basis and subdivision. The roots are approximated to arbitrary precision by iteratively constructing a series of smaller bounding simplices. We use geometric subdivision to isolate multiple roots within a simplex. An algorithm implementing this method in rounded interval arithmetic is described and analyzed. We find that when the total order of polynomials is close to the maximum order of each variable, an iteration of this solver algorithm is asymptotically more efficient than the corresponding step in a similar algorithm which relies on polynomial representation in the tensor product Bernstein basis. We also discuss various implementation issues and identify topics for further study.

[1]  Xiuzi Ye,et al.  Robust interval algorithm for surface intersections , 1997, Comput. Aided Des..

[2]  Nicholas M. Patrikalakis,et al.  Computation of the solutions of nonlinear polynomial systems , 1993, Comput. Aided Geom. Des..

[3]  Gershon Elber,et al.  Subdivision termination criteria in subdivision multivariate solvers using dual hyperplanes representations , 2007, Comput. Aided Des..

[4]  Ronald L. Graham,et al.  Concrete Mathematics, a Foundation for Computer Science , 1991, The Mathematical Gazette.

[5]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[6]  Gershon Elber,et al.  Geometric constraint solver using multivariate rational spline functions , 2001, SMA '01.

[7]  Nicholas M. Patrikalakis,et al.  Efficient and reliable methods for rounded-interval arithmetic , 1998, Comput. Aided Des..

[8]  David C. Anderson,et al.  Converting standard bivariate polynomials to Bernstein form over arbitrary triangular regions , 1986 .

[9]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[10]  Ron Goldman,et al.  Subdivision algorithms for Bézier triangles , 1983 .

[11]  T. Sederberg Algorithm for algebraic curve intersection , 1989 .

[12]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[13]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[14]  Ron Goldman,et al.  Blossoming and knot insertion algorithms for B-spline curves , 1990, Comput. Aided Geom. Des..

[15]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  James Hardy Wilkinson,et al.  Rounding errors in algebraic processes , 1964, IFIP Congress.

[17]  Xiaomei Yang Rounding Errors in Algebraic Processes , 1964, Nature.

[18]  Tom Lyche,et al.  Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces , 1992 .

[19]  Bernard Mourrain,et al.  Subdivision methods for solving polynomial equations , 2009, J. Symb. Comput..

[20]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[21]  P. Sablonnière Spline and Bézier polygons associated with a polynomial spline curve , 1978 .

[22]  Gerald Farin,et al.  Geometric modeling : algorithms and new trends , 1987 .