Optimization of Steady Flows for Incompressible Viscous Fluids

An optimal-control problem for the stationary Navier-Stokes system are investigated. The maximum principle is derived by a suitable relaxation. Its sufficiency is shown provided data involved in the control problem are small enough (depending on the Reynolds number). Regularity of the Navier-Stokes system and its adjoint problem is used.

[1]  A. Y. Chebotarëv Maximum principle in the boundary control problem for flow of a viscous fluid , 1993 .

[2]  A. Fursikov,et al.  Exact boundary zero controllability of three-dimensional Navier-Stokes equations , 1995 .

[3]  Jacques-Louis Lions,et al.  Control of distributed singular systems , 1985 .

[4]  Jindřich Nečas Sur la régularité des solutions faibles des équations elliptiques non-linéaires , 1968 .

[5]  Sri Sritharan,et al.  Optimal chattering controls for viscous flow , 1995 .

[6]  Max Gunzburger,et al.  Existence of an Optimal Solution of a Shape Control Problem for the Stationary Navier--Stokes Equations , 1998 .

[7]  Sri Sritharan,et al.  Necessary and sufficient conditions for optimal controls in viscous flow problems , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[8]  Sri Sritharan,et al.  Deterministic and Stochastic Control of Navier—Stokes Equation with Linear, Monotone, and Hyperviscosities , 2000 .

[9]  Jindřich Nečas Sur la régularité des solutions variationnelles des équations elliptiques non-linéaires d’ordre $2k$ en deux dimensions , 1967 .

[10]  H. O. Fattorini,et al.  Robustness and convergence of suboptimal controls in distributed parameter systems , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  R. V. Gamkrelidze,et al.  Principles of optimal control theory , 1977 .

[12]  S. Sritharan,et al.  Existence of optimal controls for viscous flow problems , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[13]  S. Sritharan Optimal Feedback Control of Hydrodynamics: a Progress Report , 1995 .

[14]  Tomáš Roubíček,et al.  Relaxation in Optimization Theory and Variational Calculus , 1997 .

[15]  J. Casti,et al.  The qualitative theory of optimal processes , 1976 .

[16]  Max Gunzburger A Prehistory of Flow Control and Optimization , 1995 .

[17]  J. Málek,et al.  Full regularity of weak solutions to a class of nonlinear fluids in two dimensions -- stationary, periodic problem , 1997 .

[18]  E. Casas Optimality Conditions for Some Control Problems of Turbulent Flows , 1995 .

[19]  Yuh-Roung Ou,et al.  Mathematical modeling and numerical simulation in external flow control , 1995 .

[20]  Janet S. Peterson,et al.  CONTROL OF STEADY INCOMPRESSIBLE 2D CHANNEL FLOW , 1995 .

[21]  K. Kunisch,et al.  Instantaneous control of backward-facing step flows , 1999 .

[22]  J. Warga Optimal control of differential and functional equations , 1972 .

[23]  S. Sritharan,et al.  Relaxation in Semilinear Infinite Dimensional Systems Modelling Fluid Flow Control Problems , 1995 .

[24]  R. Temam Navier-Stokes Equations , 1977 .

[25]  Kazufumi Ito,et al.  Optimal Controls of Navier--Stokes Equations , 1994 .

[26]  L. Hou,et al.  Boundary velocity control of incompressible flow with an application to viscous drag reduction , 1992 .

[27]  S. Sritharan An optimal control problem in exterior hydrodynamics , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[28]  R. Temam Remarks on the Control of Turbulent Flows , 1995 .

[29]  Jacques Louis Lions,et al.  Contrôle des systèmes distribués singuliers , 1983 .

[30]  L. Hou,et al.  Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls , 1991 .

[31]  J. Málek,et al.  C1,α-Solutions to a Class of Nonlinear Fluids in the 2D Stationary Dirichlet Problem , 2002 .