Extrinsic origins of the apparent relaxorlike behavior in CaCu3Ti4O12 ceramics at high temperatures: A cautionary tale

Although the origins of the high effective permittivity observed in CaCu3Ti4O12 (CCTO) ceramics and single crystals at ∼100–400 K have been resolved, the relaxorlike temperature- and frequency-dependence of permittivity obtained from fixed frequency capacitance measurements at higher temperatures reported in the literature remains unexplained, especially as CCTO adopts a centrosymmetric cubic crystal structure in the range of ∼35–1273 K. Impedance spectroscopy studies reveal that this type of relaxorlike behavior is an artifact induced mainly by a nonohmic sample-electrode contact impedance. In addition, an instrument-related parasitic series inductance and resistance effect modifies the measured capacitance values as the sample resistance decreases with increasing temperature. This can lead to an underestimation of the sample capacitance and, in extreme cases, to so-called ‘negative capacitance.’ Such a relaxorlike artifact and negative capacitance behavior are not unique to CCTO and may be expected in o...

[1]  M. Nygren,et al.  Origin(s) of the apparent high permittivity in CaCu3Ti4O12 ceramics: clarification on the contributions from internal barrier layer capacitor and sample-electrode contact effects , 2009 .

[2]  J. Shulman,et al.  General mechanism for negative capacitance phenomena , 2009 .

[3]  M. Oda,et al.  Dielectric and Thermal Properties of Single-Crystalline CaCu3Ti4O12 at High Temperatures , 2009 .

[4]  D. Sinclair,et al.  Comment on the origin(s) of the giant permittivity effect in CaCu3Ti4O12 single crystals and ceramics , 2009 .

[5]  Ming Li,et al.  Relaxor ferroelectric-like high effective permittivity in leaky dielectrics/oxide semiconductors induced by electrode effects: A case study of CuO ceramics , 2009 .

[6]  A. Onodera,et al.  Anomalous Dielectric Behavior in CaCu3Ti4O12 at High Temperatures , 2009 .

[7]  A. Onodera,et al.  Dielectric Properties and Phase Transition in CaCu3Ti4O12 at High Temperatures , 2008 .

[8]  J. Scott,et al.  Ferroelectrics go bananas , 2008 .

[9]  Hongtao Yu,et al.  Grain size dependence of relaxor behavior in CaCu3Ti4O12 ceramics , 2007 .

[10]  P. Lunkenheimer,et al.  Colossal dielectric constants in single-crystalline and ceramic CaCu3Ti4O12 investigated by broadband dielectric spectroscopy , 2007, 0710.1610.

[11]  K. Varma,et al.  Ferroelectriclike and pyroelectric behavior of CaCu3Ti4O12 ceramics , 2007 .

[12]  P. Lunkenheimer,et al.  Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12 , 2006, cond-mat/0612569.

[13]  Haitao Huang,et al.  Relaxor behavior in CaCu3Ti4O12 ceramics , 2006 .

[14]  T. Adams,et al.  Influence of Processing Conditions on the Electrical Properties of CaCu3Ti4O12 Ceramics , 2006 .

[15]  T. Adams,et al.  Characterization of grain boundary impedances in fine- and coarse-grained Ca Cu 3 Ti 4 O 12 ceramics , 2006 .

[16]  Il-Doo Kim,et al.  Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate , 2004, Nature materials.

[17]  Derek C. Sinclair,et al.  Giant Barrier Layer Capacitance Effects in CaCu3Ti4O12 Ceramics , 2002 .

[18]  F. Morrison,et al.  CaCu3Ti4O12: One-step internal barrier layer capacitor , 2002 .

[19]  B. Kennedy,et al.  Structural studies of the distorted perovskite Ca0.25Cu0.75TiO3 , 2001 .

[20]  D. Vanderbilt,et al.  First-principles study of the structure and lattice dielectric response of CaCu 3 Ti 4 O 12 , 2001, cond-mat/0110166.

[21]  W. S. Graswinckel,et al.  Optical Response of High-Dielectric-Constant Perovskite-Related Oxide , 2001, Science.

[22]  Margaret L. Gardel,et al.  Giant dielectric constant response in a copper-titanate , 2000 .

[23]  Arthur W. Sleight,et al.  High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases , 2000 .

[24]  Jian-Guo Ma,et al.  Comments on "Negative capacitance effect in semiconductor devices" [by M. Ershov et al., with reply] , 1999 .

[25]  H.C.Liu,et al.  Negative capacitance effect in semiconductor devices , 1998, cond-mat/9806145.

[26]  T. Mason,et al.  Experimental limitations in impedance spectroscopy:: Part V. Apparatus contributions and corrections , 1997 .

[27]  T. Tansley,et al.  An instrumental solution to the phenomenon of negative capacitances in semiconductors , 1996 .

[28]  G. Blatter,et al.  REVIEW ARTICLE: Electrical properties of grain boundaries in polycrystalline compound semiconductors , 1990 .

[29]  A. Rothwarf,et al.  Metal–Semiconductor Contacts , 1979 .

[30]  R. J. Grant,et al.  Inductive effects and A.C. measurements with solid electrolyte cells , 1977 .