Weak Second Order Multirevolution Composition Methods for Highly Oscillatory Stochastic Differential Equations with Additive or Multiplicative Noise
暂无分享,去创建一个
[1] A. Debussche,et al. Numerical simulation of focusing stochastic nonlinear Schrödinger equations , 2002 .
[2] B. Grébert,et al. On the energy exchange between resonant modes in nonlinear Schrödinger equations ✩ Echange d ’ énergie entre modes résonants dans une équation de Schrödinger non linéaire cubique , 2011 .
[3] Andreas Rößler. Second Order Runge-Kutta Methods for Itô Stochastic Differential Equations , 2009, SIAM J. Numer. Anal..
[4] G. Mil’shtein. Weak Approximation of Solutions of Systems of Stochastic Differential Equations , 1986 .
[5] Jesús María Sanz-Serna,et al. Higher-Order Averaging, Formal Series and Numerical Integration I: B-series , 2010, Found. Comput. Math..
[6] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[7] Jerrold E. Marsden,et al. Structure preserving Stochastic Impulse Methods for stiff Langevin systems with a uniform global error of order 1 or 1/2 on position , 2010, 1006.4657.
[8] A. Ostermann,et al. High order splitting methods for analytic semigroups exist , 2009 .
[9] F. Verhulst,et al. Averaging Methods in Nonlinear Dynamical Systems , 1985 .
[10] Linda R. Petzold,et al. Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.
[11] Stéphane Descombes,et al. Splitting methods with complex times for parabolic equations , 2009 .
[12] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[13] G. Sussman,et al. Chaotic Evolution of the Solar System , 1992, Science.
[14] Stig Larsson,et al. A Trigonometric Method for the Linear Stochastic Wave Equation , 2012, SIAM J. Numer. Anal..
[15] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[16] Marlis Hochbruck,et al. Error analysis of exponential integrators for oscillatory second-order differential equations , 2006 .
[17] Michael V. Tretyakov,et al. Numerical Methods in the Weak Sense for Stochastic Differential Equations with Small Noise , 1997 .
[18] Assyr Abdulle,et al. Stabilized multilevel Monte Carlo method for stiff stochastic differential equations , 2013, J. Comput. Phys..
[19] M. V. Tretyakov,et al. Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.
[20] Q. Sheng. Solving Linear Partial Differential Equations by Exponential Splitting , 1989 .
[21] Denis Talay,et al. Efficient numerical schemes for the approximation of expectations of functionals of the solution of a S.D.E., and applications , 1984 .
[22] A. D. Bouard,et al. Weak and Strong Order of Convergence of a Semidiscrete Scheme for the Stochastic Nonlinear Schrodinger Equation , 2006 .
[23] D. Talay. Discrétisation d'une équation différentielle stochastique et calcul approché d'espérances de fonctionnelles de la solution , 1986 .
[24] Kristian Debrabant,et al. Diagonally drift-implicit Runge--Kutta methods of weak order one and two for Itô SDEs and stability analysis , 2009 .
[25] David Cohen,et al. Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations , 2012, Numerische Mathematik.
[26] Manuel Palacios,et al. A new approach to the construction of multirevolution methods and their implementation , 1997 .
[27] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[28] Assyr Abdulle,et al. Weak Second Order Explicit Stabilized Methods for Stiff Stochastic Differential Equations , 2013, SIAM J. Sci. Comput..
[29] E Weinan,et al. Heterogeneous multiscale methods: A review , 2007 .
[30] Ander Murua,et al. Stroboscopic Averaging for the Nonlinear Schrödinger Equation , 2015, Found. Comput. Math..
[31] Fernando Casas,et al. On the necessity of negative coefficients for operator splitting schemes of order higher than two , 2005 .
[32] Ander Murua,et al. Multi-revolution composition methods for highly oscillatory differential equations , 2014, Numerische Mathematik.
[33] David Cohen,et al. On the numerical discretisation of stochastic oscillators , 2012, Math. Comput. Simul..