Impact of EV fast charging stations on the power distribution network of a Latin American intermediate city

Uno de los desafios mas importantes para mitigar el cambio climatico global es avanzar hacia una movilidad sostenible. En esta linea, los vehiculos electricos son actualmente un medio de transporte eficiente y ecologico.El objetivo de esta investigacion es analizar la incidencia de la implementacion de estaciones de carga rapida para vehiculos electricos.en el sistema de distribucion de energia de una ciudad intermedia latinoamericana. El articulo cubre aspectos sociales, geograficos y aspectos tecnicos para determinar la infraestructura minima necesaria para el estudio de caso seleccionado. El analisis es llevado a cabo mediante herramientas computacionales para modelar una estacion de carga rapida de 50 kW con AC / DC y DC / DC convertidor de poder. La inclusion de este tipo de estaciones en uno de los alimentadores del sistema de distribucion de energia se estudia en la ciudad de Cuenca, Ecuador. Despues del analisis, se puede concluir que el impacto de la inclusion de las estaciones de carga rapida en el sistema de distribucion del area de estudio se reducen en terminos de distorsion armonica y capacidad energetica, este bajo impacto tecnico puede generar beneficios economicos y ambientales para la ciudad. Esta estudio ayuda a establecer el procedimiento necesario para determinar la infraestructura de carga rapida en centros urbanos y verificar su impacto en la red de distribucion de energia.

[1]  Syed Muhammad Anwar,et al.  A survey on electric vehicle transportation within smart grid system , 2018 .

[2]  S. Funke,et al.  Fast charging infrastructure for electric vehicles: Today’s situation and future needs , 2018, Transportation Research Part D: Transport and Environment.

[3]  J. L. Espinoza,et al.  Micro grid laboratory as a tool for research on non-conventional energy sources in Ecuador , 2017, 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC).

[4]  Salman Habib,et al.  Impact analysis of vehicle-to-grid technology and charging strategies of electric vehicles on distribution networks – A review , 2015 .

[5]  Zita Vale,et al.  Evaluation of the electric vehicle impact in the power demand curve in a smart grid environment , 2014 .

[6]  K. Tammi,et al.  Impact of Electric Vehicle Charging Station Load on Distribution Network , 2018 .

[7]  Thomas Bräunl,et al.  Driving electric vehicles at highway speeds: The effect of higher driving speeds on energy consumption and driving range for electric vehicles in Australia , 2016 .

[8]  Nasrudin Abd Rahim,et al.  Recent progress and development on power DC-DC converter topology, control, design and applications: A review , 2018 .

[9]  Mark Ferguson,et al.  Electric buses: A review of alternative powertrains , 2016 .

[10]  Quentin Hoarau,et al.  Interactions between electric mobility and photovoltaic generation: A review , 2018, Renewable and Sustainable Energy Reviews.

[11]  Antonio Colmenar-Santos,et al.  Planning Minimum Interurban Fast Charging Infrastructure for Electric Vehicles: Methodology and Application to Spain , 2014 .

[12]  C. Chellaswamy,et al.  Future renewable energy option for recharging full electric vehicles , 2017 .

[13]  Claire Weiller,et al.  Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States , 2011 .

[14]  C. Cañizares,et al.  Power Generation Planning of Galapagos’ Microgrid Considering Electric Vehicles and Induction Stoves , 2019, IEEE Transactions on Sustainable Energy.

[15]  Pedro Nunes,et al.  The use of parking lots to solar-charge electric vehicles , 2016 .

[16]  Guillermo Angel Velázquez,et al.  LA EVOLUCIÓN DE LAS CIUDADES INTERMEDIAS EN LA ARGENTINA , 2015 .

[17]  Frede Blaabjerg,et al.  A Review of Passive Power Filters for Three-Phase Grid-Connected Voltage-Source Converters , 2016, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[18]  Abdulkadir Balikci,et al.  A novel Lithium-Ion-Polymer battery model for hybrid/electric vehicles , 2014, 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE).

[19]  Maria Dolores Gil Montoya,et al.  Electric vehicles in Spain: An overview of charging systems , 2017 .

[20]  Pavol Bauer,et al.  System design for a solar powered electric vehicle charging station for workplaces , 2016 .

[21]  Dale Hall,et al.  Electric Vehicle Capitals of the World: Demonstrating the Path to Electric Drive , 2017 .

[22]  P. T. Krein,et al.  Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles , 2013, IEEE Transactions on Power Electronics.

[23]  M. Castro,et al.  Electricity sector in Ecuador: An overview of the 2007–2017 decade , 2018 .

[24]  Sang Jib Kwon,et al.  Renewable electricity generation systems for electric-powered taxis: The case of Daejeon metropolitan city , 2016 .

[25]  S. Dusmez,et al.  Comprehensive Topological Analysis of Conductive and Inductive Charging Solutions for Plug-In Electric Vehicles , 2012, IEEE Transactions on Vehicular Technology.

[26]  Yu Peng,et al.  A review on electric vehicles interacting with renewable energy in smart grid , 2015 .

[27]  Vigna Kumaran Ramachandaramurthy,et al.  Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques , 2016 .

[28]  Reenu George,et al.  Practical Evaluation of a Full-BridgePhase-Shift-Modulated ZVS DC-DCConverter , 2014 .

[29]  Margaret Smith,et al.  Costs Associated With Non-Residential Electric Vehicle Supply Equipment: Factors to consider in the implementation of electric vehicle charging stations , 2015 .

[30]  Dimitrios Efthymiou,et al.  Electric vehicles charging infrastructure location: a genetic algorithm approach , 2017, European Transport Research Review.