A smoothed exact penalty function method for the optimal-fuel spacecraft rendezvous problem with the collision avoidance constraint

This paper studies the minimum-fuel rendezvous problem subject to collision avoidance constraint. A new spacecraft rendezvous model is established. Based on this model, a state-constrained optimal control problem is formulated. A smoothed exact penalty function method is used to transform the constrained optimal control problem into a sequence of approximate unconstrained optimization problems. It is shown that the solutions of these approximate unconstrained optimization problems converge to the solution of the original problem. Finally, the effectiveness of the proposed approach is demonstrated through numerical simulation in the case of spacecraft rendezvous on a highly elliptical orbit.

[1]  Oliver Montenbruck,et al.  Autonomous Formation Flying for the PRISMA Mission , 2007 .

[2]  G. Pareschi,et al.  The SIMBOL-X hard X-ray mission , 2006 .

[3]  D. Jezewski A closed-form solution for minimum-fuel, constant thrust trajectories , 1969 .

[4]  Staffan Persson,et al.  PRISMA—A formation flying project in implementation phase , 2009 .

[5]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[6]  Fredrik Sjöberg,et al.  SMART-OLEV—An orbital life extension vehicle for servicing commercial spacecrafts in GEO , 2008 .

[7]  K. Yamanaka,et al.  New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit , 2002 .

[8]  Stefano Lucidi,et al.  A Derivative-Free Algorithm for Inequality Constrained Nonlinear Programming via Smoothing of an linfty Penalty Function , 2009, SIAM J. Optim..

[9]  Richard Epenoy,et al.  Fuel Optimization for Continuous-Thrust Orbital Rendezvous with Collision Avoidance Constraint , 2011 .

[10]  Guo-Jin Tang,et al.  Optimal multi-objective linearized impulsive rendezvous under uncertainty , 2010 .

[11]  Song Xu,et al.  Smoothing Method for Minimax Problems , 2001, Comput. Optim. Appl..

[12]  Clóvis C. Gonzaga,et al.  A nonlinear programming algorithm based on non-coercive penalty functions , 2003, Math. Program..

[13]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[14]  R. Epenoy,et al.  New smoothing techniques for solving bang–bang optimal control problems—numerical results and statistical interpretation , 2002 .

[15]  Kok Lay Teo,et al.  A Unified Computational Approach to Optimal Control Problems , 1991 .

[16]  B. H. Billik,et al.  Some optimal low-acceleration rendezvous maneuvers , 1964 .

[17]  Mayer Humi,et al.  Fuel-optimal rendezvous in a general central force field , 1993 .

[18]  Thomas Carter,et al.  Fuel-optimal maneuvers of a spacecraft relative to a point in circular orbit , 1984 .

[19]  E. Euler,et al.  Optimal Low-Thrust Rendezvous Control , 1969 .

[20]  Ya-zhong Luo,et al.  Spacecraft optimal rendezvous controller design using simulated annealing , 2005 .

[21]  Dimitri P. Bertsekas,et al.  Necessary and sufficient conditions for a penalty method to be exact , 1975, Math. Program..

[22]  D. Jezewski,et al.  A closed-form solution for minimum-fuel, constant-thrust trajectories , 1970 .

[23]  J. R. Guinn,et al.  Description of the rendezvous experiment designed for 2007 Mars Premier mission , 2003 .

[24]  Zongli Lin,et al.  Lyapunov Differential Equation Approach to Elliptical Orbital Rendezvous with Constrained Controls , 2011 .

[25]  W. H. Clohessy,et al.  Terminal Guidance System for Satellite Rendezvous , 2012 .

[26]  O. SIAMJ. A DERIVATIVE-FREE ALGORITHM FOR INEQUALITY CONSTRAINED NONLINEAR PROGRAMMING VIA SMOOTHING OF AN ∞ PENALTY FUNCTION∗ , 2009 .