Spectroscopic imaging of single atoms within a bulk solid.
暂无分享,去创建一个
P D Nellist | S D Findlay | L J Allen | A R Lupini | P. Nellist | L. Allen | M. Oxley | M. Varela | H. Christen | S. Findlay | A. Lupini | A. Borisevich | O. Krivanek | N. Dellby | M Varela | S. Pennycook | H M Christen | A Y Borisevich | M P Oxley | N Dellby | O L Krivanek | S J Pennycook
[1] Nobuo Tanaka,et al. POSITION DEPENDENCE OF THE VISIBILITY OF A SINGLE GOLD ATOM IN SILICON CRYSTALS IN HAADF-STEM IMAGE SIMULATION , 1997 .
[2] S.-W. Cheong,et al. Atomic-scale images of charge ordering in a mixed-valence manganite , 2002, Nature.
[3] D. Muller,et al. Delocalization in inelastic scattering , 1995 .
[4] John M. Rodenburg,et al. Beyond the conventional information limit: the relevant coherence function , 1994 .
[5] E. N. Maslen,et al. Electron difference density and structural parameters in CaTiO3 , 1992 .
[6] A V Crewe,et al. Visibility of Single Atoms , 1970, Science.
[7] L. Allen,et al. Lattice-resolution contrast from a focused coherent electron probe. Part I. , 2003, Ultramicroscopy.
[8] G. Duscher,et al. Atomic Column Resolved Electron Energy‐Loss Spectroscopy , 1998 .
[9] P. Nellist,et al. Direct Imaging of the Atomic Configuration of Ultradispersed Catalysts , 1996, Science.
[10] C Colliex,et al. Element-selective single atom imaging. , 2000, Science.
[11] S. Pennycook,et al. Towards Atomic Column-by-Column Spectroscopy , 1998 .
[12] Akira Ohtomo,et al. Artificial charge-modulationin atomic-scale perovskite titanate superlattices , 2002, Nature.
[13] S. Pennycook,et al. Localization in elastic and inelastic scattering. , 2003, Ultramicroscopy.
[14] P. Nellist,et al. The principles and interpretation of annular dark-field Z-contrast imaging , 2000 .
[15] D. Muller,et al. Direct observation of defect-mediated cluster nucleation , 2002, Nature materials.
[16] L. Allen,et al. Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy. , 2003, Physical review letters.
[17] Jochen Mannhart,et al. Grain boundaries in high-Tc superconductors , 2002 .
[18] David E. Luzzi,et al. Tumbling atoms and evidence for charge transfer in La2@C80@SWNT , 2000 .
[19] P. H. Citrin,et al. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si , 2002, Nature.
[20] P D Nellist,et al. Progress in aberration-corrected scanning transmission electron microscopy. , 2001, Journal of electron microscopy.
[21] O. L. Krivanek,et al. Sub-ångstrom resolution using aberration corrected electron optics , 2002, Nature.
[22] S. Iijima,et al. Direct imaging of Sc2@C84 molecules encapsulated inside single-wall carbon nanotubes by high resolution electron microscopy with atomic sensitivity. , 2003, Physical review letters.
[23] J. Spence,et al. Stem microanalysis by transmission electron energy loss spectroscopy in crystals , 1982 .
[24] G. Duscher,et al. Nonstoichiometry and the electrical activity of grain boundaries in SrTiO3. , 2001, Physical review letters.
[25] L. Allen,et al. Delocalization of the effective interaction for inner-shell ionization in crystals , 1998 .
[26] Pantelides,et al. Excitonic effects in core-excitation spectra of semiconductors , 2000, Physical review letters.
[27] Kirkland,et al. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes , 2000, Science.
[28] C. L. Jia,et al. Atomic-Resolution Imaging of Oxygen in Perovskite Ceramics , 2003, Science.
[29] H. Rose,et al. Theory of image formation by inelastically scattered electrons in the electron microscope , 1985 .