Spectroscopic imaging of single atoms within a bulk solid.

The ability to localize, identify, and measure the electronic environment of individual atoms will provide fundamental insights into many issues in materials science, physics, and nanotechnology. We demonstrate, using an aberration-corrected scanning transmission electron microscope, the spectroscopic imaging of single La atoms inside CaTiO3. Dynamical simulations confirm that the spectroscopic information is spatially confined around the scattering atom. Furthermore, we show how the depth of the atom within the crystal may be estimated.

[1]  Nobuo Tanaka,et al.  POSITION DEPENDENCE OF THE VISIBILITY OF A SINGLE GOLD ATOM IN SILICON CRYSTALS IN HAADF-STEM IMAGE SIMULATION , 1997 .

[2]  S.-W. Cheong,et al.  Atomic-scale images of charge ordering in a mixed-valence manganite , 2002, Nature.

[3]  D. Muller,et al.  Delocalization in inelastic scattering , 1995 .

[4]  John M. Rodenburg,et al.  Beyond the conventional information limit: the relevant coherence function , 1994 .

[5]  E. N. Maslen,et al.  Electron difference density and structural parameters in CaTiO3 , 1992 .

[6]  A V Crewe,et al.  Visibility of Single Atoms , 1970, Science.

[7]  L. Allen,et al.  Lattice-resolution contrast from a focused coherent electron probe. Part I. , 2003, Ultramicroscopy.

[8]  G. Duscher,et al.  Atomic Column Resolved Electron Energy‐Loss Spectroscopy , 1998 .

[9]  P. Nellist,et al.  Direct Imaging of the Atomic Configuration of Ultradispersed Catalysts , 1996, Science.

[10]  C Colliex,et al.  Element-selective single atom imaging. , 2000, Science.

[11]  S. Pennycook,et al.  Towards Atomic Column-by-Column Spectroscopy , 1998 .

[12]  Akira Ohtomo,et al.  Artificial charge-modulationin atomic-scale perovskite titanate superlattices , 2002, Nature.

[13]  S. Pennycook,et al.  Localization in elastic and inelastic scattering. , 2003, Ultramicroscopy.

[14]  P. Nellist,et al.  The principles and interpretation of annular dark-field Z-contrast imaging , 2000 .

[15]  D. Muller,et al.  Direct observation of defect-mediated cluster nucleation , 2002, Nature materials.

[16]  L. Allen,et al.  Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy. , 2003, Physical review letters.

[17]  Jochen Mannhart,et al.  Grain boundaries in high-Tc superconductors , 2002 .

[18]  David E. Luzzi,et al.  Tumbling atoms and evidence for charge transfer in La2@C80@SWNT , 2000 .

[19]  P. H. Citrin,et al.  Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si , 2002, Nature.

[20]  P D Nellist,et al.  Progress in aberration-corrected scanning transmission electron microscopy. , 2001, Journal of electron microscopy.

[21]  O. L. Krivanek,et al.  Sub-ångstrom resolution using aberration corrected electron optics , 2002, Nature.

[22]  S. Iijima,et al.  Direct imaging of Sc2@C84 molecules encapsulated inside single-wall carbon nanotubes by high resolution electron microscopy with atomic sensitivity. , 2003, Physical review letters.

[23]  J. Spence,et al.  Stem microanalysis by transmission electron energy loss spectroscopy in crystals , 1982 .

[24]  G. Duscher,et al.  Nonstoichiometry and the electrical activity of grain boundaries in SrTiO3. , 2001, Physical review letters.

[25]  L. Allen,et al.  Delocalization of the effective interaction for inner-shell ionization in crystals , 1998 .

[26]  Pantelides,et al.  Excitonic effects in core-excitation spectra of semiconductors , 2000, Physical review letters.

[27]  Kirkland,et al.  Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes , 2000, Science.

[28]  C. L. Jia,et al.  Atomic-Resolution Imaging of Oxygen in Perovskite Ceramics , 2003, Science.

[29]  H. Rose,et al.  Theory of image formation by inelastically scattered electrons in the electron microscope , 1985 .