Hema-Functionalized Graphene Oxide: a Versatile Nanofiller for Poly(Propylene Fumarate)-Based Hybrid Materials

[1]  Sunny C. Patel,et al.  Two-dimensional graphene oxide-reinforced porous biodegradable polymeric nanocomposites for bone tissue engineering. , 2019, Journal of biomedical materials research. Part A.

[2]  S. Tjong,et al.  Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications , 2019, Nanomaterials.

[3]  M. Grunlan,et al.  Hydrolytic Degradation and Erosion of Polyester Biomaterials. , 2018, ACS macro letters.

[4]  A. Díez-Pascual Tissue Engineering Bionanocomposites Based on Poly(propylene fumarate) , 2017, Polymers.

[5]  J. Simonsen,et al.  Boron nitride nanotubes and nanoplatelets as reinforcing agents of polymeric matrices for bone tissue engineering. , 2017, Journal of biomedical materials research. Part B, Applied biomaterials.

[6]  A. Khalafi‐Nezhad,et al.  Graphene Grafted N‐Methyl‐4‐pyridinamine (G‐NMPA): An Efficient Heterogeneous Organocatalyst for Acetylation of Alcohols , 2017 .

[7]  M. Bilewicz,et al.  Novel crosslinkable polyester resin–based composites as injectable bioactive scaffolds , 2017 .

[8]  Nan Zhang,et al.  Graphene oxide induced hydrolytic degradation behavior changes of poly(l-lactide) in different mediums , 2016 .

[9]  S. Eigler,et al.  Graphene Oxide: Fundamentals and Applications , 2016 .

[10]  A. Tkachev,et al.  The effect of graphene oxide (GO) on biomineralization and solubility of calcium hydroxyapatite (HA) , 2016, Protection of Metals and Physical Chemistry of Surfaces.

[11]  Wei Chen,et al.  Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation. , 2016, ACS nano.

[12]  R. Gauvin,et al.  Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid , 2016, Journal of The Royal Society Interface.

[13]  H. Lei,et al.  Carboxyl-Assisted Synthesis of Nitrogen-Doped Graphene Sheets for Supercapacitor Applications , 2015, Nanoscale Research Letters.

[14]  A. Amassian,et al.  Bromination of Graphene: A New Route to Making High Performance Transparent Conducting Electrodes with Low Optical Losses. , 2015, ACS applied materials & interfaces.

[15]  Woo-Jin Chang,et al.  Highly Sensitive Detection and Removal of Lead Ions in Water Using Cysteine-Functionalized Graphene Oxide/Polypyrrole Nanocomposite Film Electrode. , 2015, ACS applied materials & interfaces.

[16]  Adam B. Nover,et al.  Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. , 2015, Acta biomaterialia.

[17]  A. Ragu Synthesis and Characterization of Nano Hydroxyapatite with Poly Propylene Fumarate Nanocomposite for Bone Tissue Engineering , 2015 .

[18]  M. Biesinger,et al.  Synthesis and characterization of novel TiO2-poly(propylene fumarate) nanocomposites for bone cementation. , 2014, Journal of materials chemistry. B.

[19]  A. D. Todd,et al.  Harnessing the chemistry of graphene oxide. , 2014, Chemical Society reviews.

[20]  M. Pumera,et al.  Towards graphene bromide: bromination of graphite oxide. , 2014, Nanoscale.

[21]  D. Gournis,et al.  EFFECTS OF GRAPHENE OXIDE ON MOLECULAR DYNAMICS, THERMAL AND MECHANICAL PROPERTIES OF POLY(L-LACTIC ACID) , 2014 .

[22]  G. Santillán,et al.  Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: effects on mineral coating morphology and growth kinetic. , 2013, Biochimica et biophysica acta.

[23]  A. Mikos,et al.  Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering. , 2013, Acta biomaterialia.

[24]  A. Mikos,et al.  Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering. , 2013, Biomacromolecules.

[25]  G. Zaikov,et al.  On Polymer Nanocomposites , 2013 .

[26]  P. Ferreira,et al.  Functionalization of polydimethylsiloxane membranes to be used in the production of voice prostheses , 2013, Science and technology of advanced materials.

[27]  C. Rey,et al.  Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters , 2012, Journal of Materials Science: Materials in Medicine.

[28]  R. Piner,et al.  Mechanical properties of monolayer graphene oxide. , 2010, ACS nano.

[29]  Chunhai Fan,et al.  Intracellular imaging with a graphene-based fluorescent probe. , 2010, Small.

[30]  Brian P. Jones,et al.  DBU catalysis of N,N'-carbonyldiimidazole-mediated amidations. , 2010, Organic letters.

[31]  J. Fisher,et al.  Synthesis of poly(propylene fumarate) , 2009, Nature Protocols.

[32]  Tao Zhang,et al.  Poly(propylene fumarate)/(calcium sulphate/beta-tricalcium phosphate) composites: preparation, characterization and in vitro degradation. , 2009, Acta Biomaterialia.

[33]  Antonios G Mikos,et al.  In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. , 2008, Bone.

[34]  Alfred J. Crosby,et al.  Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties , 2007 .

[35]  J. Tour,et al.  Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. , 2006, Biomacromolecules.

[36]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[37]  James M Tour,et al.  Rheological behaviour and mechanical characterization of injectable poly(propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineering , 2005, Nanotechnology.

[38]  Antonios G Mikos,et al.  Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. , 2004, Biomacromolecules.

[39]  J. Fisher,et al.  Photoinitiated cross-linking of the biodegradable polyester poly(propylene fumarate). Part II. In vitro degradation. , 2003, Biomacromolecules.

[40]  David Dean,et al.  Photoinitiated cross-linking of the biodegradable polyester poly(propylene fumarate). Part I. Determination of network structure. , 2003, Biomacromolecules.

[41]  Antonios G Mikos,et al.  In vitro cytotoxicity of injectable and biodegradable poly(propylene fumarate)-based networks: unreacted macromers, cross-linked networks, and degradation products. , 2003, Biomacromolecules.

[42]  J. Fisher,et al.  Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. , 2002, Biomaterials.

[43]  M. Coskun,et al.  A detailed study of thermal degradation of poly(2-hydroxyethyl methacrylate) , 2001 .

[44]  A. Mikos,et al.  Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate. , 2000, Biomaterials.

[45]  M. Akashi,et al.  Hydroxyapatite Formation on/in Poly(vinyl alcohol) Hydrogel Matrices Using a Novel Alternate Soaking Process , 1998 .

[46]  M. Sefton,et al.  Tissue engineering. , 1998, Journal of cutaneous medicine and surgery.

[47]  Graham J. Leggett,et al.  Functionalization of Hydroxyl and Carboxylic Acid Terminated Self-Assembled Monolayers , 1997 .

[48]  V. I. Povstugar,et al.  Bromination reaction in C C double bond determination by XPS , 1994 .

[49]  Buddy D. Ratner,et al.  Plasma-deposited polymeric films prepared from carbonyl-containing volatile precursors: XPS chemical derivatization and static SIMS surface characterization , 1991 .

[50]  L. S. Matthews,et al.  The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. , 1983, Journal of biomechanics.