A flexible symmetry-preserving Galerkin/POD reduced order model applied to a convective instability problem
暂无分享,去创建一个
H. Herrero | José M. Vega | J. Vega | F. Pla | H. Herrero | F. Pla | Henar Herrero
[1] Jeffrey P. Thomas,et al. Using Automatic Differentiation to Create a Nonlinear Reduced-Order-Model Aerodynamic Solver , 2010 .
[2] Dan S. Henningson,et al. Model Reduction of the Nonlinear Complex Ginzburg-Landau Equation , 2010, SIAM J. Appl. Dyn. Syst..
[4] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[5] E. Knobloch,et al. Symmetry and Symmetry-Breaking Bifurcations in Fluid Dynamics , 1991 .
[6] Roger Temam,et al. Inertial Manifolds for the Kuramoto-Sivashinsky Equation and an Estimate of their Lowest Dimension , 1986 .
[7] F. Richter,et al. Heat transfer and horizontally averaged temperature of convection with large viscosity variations , 1983, Journal of Fluid Mechanics.
[8] E. Allgower,et al. Introduction to Numerical Continuation Methods , 1987 .
[9] Juan J. Alonso,et al. Investigation of non-linear projection for POD based reduced order models for Aerodynamics , 2001 .
[10] P. Sagaut,et al. Towards an adaptive POD/SVD surrogate model for aeronautic design , 2011 .
[11] P. Beran,et al. Reduced-order modeling: new approaches for computational physics , 2004 .
[12] José M. Vega,et al. Construction of Bifurcation Diagrams Using POD on the Fly , 2014, SIAM J. Appl. Dyn. Syst..
[13] Martin Golubitsky,et al. Symmetries and pattern selection in Rayleigh-Bénard convection , 1984 .
[14] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[15] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.
[16] A. Patera,et al. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .
[17] José M. Vega,et al. Reduced order models based on local POD plus Galerkin projection , 2010, J. Comput. Phys..
[18] J. Strikwerda. Finite Difference Schemes and Partial Differential Equations , 1989 .
[19] Roger Temam,et al. Localization and approximation of attractors for the Ginzburg-Landau equation , 1991 .
[20] C. Bernardi,et al. Approximations spectrales de problèmes aux limites elliptiques , 2003 .
[21] Yvon Maday,et al. RB (Reduced basis) for RB (Rayleigh–Bénard) , 2013 .
[22] Earl H. Dowell,et al. Modeling of Fluid-Structure Interaction , 2001 .
[23] D. Rovas,et al. Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .
[24] Kelly Cohen,et al. Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition , 2008, Journal of Fluid Mechanics.
[25] Gianluigi Rozza,et al. Reduced Order Methods for Modeling and Computational Reduction , 2013 .
[26] P. Sagaut,et al. Calibrated reduced-order POD-Galerkin system for fluid flow modelling , 2005 .
[27] O. Zienkiewicz. The Finite Element Method In Engineering Science , 1971 .
[28] Ulrich R. Christensen,et al. Dynamic Earth: Plates, Plumes and Mantle Convection , 2000 .
[29] Stefan Volkwein,et al. Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..
[30] Gianluigi Rozza,et al. Model Order Reduction in Fluid Dynamics: Challenges and Perspectives , 2014 .
[31] J. Vega,et al. Reduced-Order Modeling of Three-Dimensional External Aerodynamic Flows , 2012 .
[32] G. Sell,et al. Inertial manifolds for nonlinear evolutionary equations , 1988 .
[33] Henri Bénard,et al. Les tourbillons cellulaires dans une nappe liquide. - Méthodes optiques d'observation et d'enregistrement , 1901 .
[34] Bifurcation phenomena in a convection problem with temperature dependent viscosity at low aspect ratio , 2008, 0810.3799.
[35] I. Kevrekidis,et al. Equation-free/Galerkin-free POD-assisted computation of incompressible flows , 2005 .
[36] Andrea Manzoni,et al. An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier–Stokes flows , 2014 .
[37] José M. Vega,et al. On the use of POD-based ROMs to analyze bifurcations in some dissipative systems , 2012 .
[38] M. Jolly. Bifurcation computations on an approximate inertial manifold for the 2D Navier-Stokes equations , 1993 .
[39] I. Aranson,et al. The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.
[40] David Ryckelynck. Hyper‐reduction of mechanical models involving internal variables , 2009 .
[41] M. Haragus,et al. Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems , 2010 .
[42] James C. Robinson. Computing inertial manifolds , 2002 .
[43] Nadine Aubry,et al. Preserving Symmetries in the Proper Orthogonal Decomposition , 1993, SIAM J. Sci. Comput..
[44] Danny C. Sorensen,et al. A Symmetry Preserving Singular Value Decomposition , 2006, SIAM J. Matrix Anal. Appl..
[45] Danny C. Sorensen,et al. Best Nonspherical Symmetric Low Rank Approximation , 2009, SIAM J. Matrix Anal. Appl..
[46] Gianluigi Rozza,et al. Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity , 2009, J. Comput. Phys..
[47] D. Rempfer. LOW-DIMENSIONAL MODELING AND NUMERICAL SIMULATION OF TRANSITION IN SIMPLE SHEAR FLOWS , 2003 .
[48] Charbel Farhat,et al. Reduced-order fluid/structure modeling of a complete aircraft configuration , 2006 .
[49] A. Velazquez,et al. Reduced-Order Model for Viscous Aerodynamic Flow Past an Airfoil , 2010 .
[50] Eusebio Valero,et al. Local POD Plus Galerkin Projection in the Unsteady Lid-Driven Cavity Problem , 2011, SIAM J. Sci. Comput..
[51] A. Velazquez,et al. A method to generate computationally efficient reduced order models , 2009 .
[52] Danny C. Sorensen,et al. Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..
[53] G. Karniadakis,et al. Stability and accuracy of periodic flow solutions obtained by a POD-penalty method , 2005 .