Numerical models of blackbody-dominated gamma-ray bursts – I. Hydrodynamics and the origin of the thermal emission

GRB 101225A is a prototype of the class of blackbody-dominated (BBD) gamma-ray bursts (GRBs). It has been suggested that BBD-GRBs result from the merger of a binary system formed by a neutron star and the helium core of an evolved star. We have modelled the propagation of ultrarelativistic jets through the environment left behind the merger by means of relativistic hydrodynamic simulations. In this paper, the output of our numerical models is post-processed to obtain the (thermal) radiative signature of the resulting outflow. We outline the most relevant dynamical details of the jet propagation and connect them to the generation of thermal radiation in GRB events akin to that of GRB 101225A. A comprehensive parameter study of the jet/environment interaction has been performed and synthetic light curves are confronted with the observational data. The thermal emission in our models originates from the interaction between the jet and the hydrogen envelope ejected during the neutron star/He core merger. We find that the lack of a classical afterglow and the accompanying thermal emission in BBD-GRBs can be explained by the interaction of an ultrarelativistic jet with a toroidally shaped ejecta whose axis coincides with the binary rotation axis. The spectral inversion and reddening happening at about 2 d in GRB 101225A can be related to the time at which the massive shell ejected in an early phase of the common envelope evolution of the progenitor system is completely ablated by the ultrarelativistic jet.

[1]  Akira Mizuta,et al.  THERMAL RADIATION FROM GAMMA-RAY BURST JETS , 2010, 1006.2440.

[2]  E. Lewis,et al.  Radiative Processes in Astrophysics: George B. Rybicki and Alan P. Lightman. Wiley, New York, NY, 1979, 382 pp., U.K. £ 19, ISBN 0-47-104815-1 , 1981 .

[3]  L. Lehner,et al.  Post-merger electromagnetic emissions from disks perturbed by binary black holes , 2009, 0910.4969.

[4]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[5]  TEMPORAL AND ANGULAR PROPERTIES OF GAMMA-RAY BURST JETS EMERGING FROM MASSIVE STARS , 2006, astro-ph/0609254.

[6]  S. B. Pandey,et al.  GRB 090618: Detection of thermal X-ray emission from a bright gamma-ray burst , 2011 .

[7]  Helium Star/Black Hole Mergers: A New Gamma-Ray Burst Model , 1998, astro-ph/9804167.

[8]  Caltech,et al.  Relativistic Jets in Collapsars , 2002, astro-ph/0207436.

[9]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[10]  R. Chevalier COMMON ENVELOPE EVOLUTION LEADING TO SUPERNOVAE WITH DENSE INTERACTION , 2012, 1204.3300.

[11]  P. Brown,et al.  The association of GRB 060218 with a supernova and the evolution of the shock wave , 2006, Nature.

[12]  Inga Kamp,et al.  European Physical Journal Web of Conferences , 2015 .

[13]  Davide Lazzati,et al.  THE ORIGIN AND PROPAGATION OF VARIABILITY IN THE OUTFLOWS OF LONG-DURATION GAMMA-RAY BURSTS , 2010, 1002.0361.

[14]  Takanori Sakamoto,et al.  Low-Luminosity GRB 060218: A Collapsar Jet from a Neutron Star, Leaving a Magnetar as a Remnant? , 2007 .

[15]  D. Nakauchi,et al.  BLUE SUPERGIANT MODEL FOR ULTRA-LONG GAMMA-RAY BURST WITH SUPERLUMINOUS-SUPERNOVA-LIKE BUMP , 2013, 1307.5061.

[16]  M. Barkov,et al.  The afterglow of a dense molecular cloud after the passage of a cosmological gamma-ray burst , 2005 .

[17]  H. Nagakura,et al.  POPULATION III GAMMA-RAY BURSTS AND BREAKOUT CRITERIA FOR ACCRETION-POWERED JETS , 2011, 1104.5691.

[18]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[19]  Shoichi Yamada,et al.  JET PROPAGATIONS, BREAKOUTS, AND PHOTOSPHERIC EMISSIONS IN COLLAPSING MASSIVE PROGENITORS OF LONG-DURATION GAMMA-RAY BURSTS , 2010, 1009.2326.

[20]  M. Aloy,et al.  Synthetic X-ray light curves of BL Lacs from relativistic hydrodynamic simulations , 2004, astro-ph/0401266.

[21]  Antonio Marquina,et al.  Capturing Shock Reflections , 1996 .

[22]  M. Barkov,et al.  Interaction of a cosmological gamma-ray burst with a dense molecular cloud and the formation of jets , 2005 .

[23]  Chris L. Fryer,et al.  SIMULATING THE COMMON ENVELOPE PHASE OF A RED GIANT USING SMOOTHED-PARTICLE HYDRODYNAMICS AND UNIFORM-GRID CODES , 2011, 1107.5072.

[24]  Chris L. Fryer,et al.  The merger of a helium star and a black hole: gamma-ray bursts , 2000, astro-ph/0011236.

[25]  D. Badjin,et al.  Thermal emission in gamma-ray burst afterglows , 2013, 1304.2793.

[26]  K. L. Page,et al.  The unusual γ-ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33 , 2011, Nature.

[27]  Ralph S. Sutherland,et al.  Accurate free–free Gaunt factors for astrophysical plasmas , 1998 .

[28]  M. Aloy,et al.  SPECTRAL EVOLUTION OF SUPERLUMINAL COMPONENTS IN PARSEC-SCALE JETS , 2008, 0811.1143.

[29]  Martí,et al.  Relativistic Jets from Collapsars , 1999, The Astrophysical journal.

[30]  Petar Mimica,et al.  Numerical models of blackbody-dominated gamma-ray bursts – II. Emission properties , 2014, 1408.1814.

[31]  D. Lazzati,et al.  THREE-DIMENSIONAL ADAPTIVE MESH REFINEMENT SIMULATIONS OF LONG-DURATION GAMMA-RAY BURST JETS INSIDE MASSIVE PROGENITOR STARS , 2012, 1212.0539.

[32]  P. Ricker,et al.  AN AMR STUDY OF THE COMMON-ENVELOPE PHASE OF BINARY EVOLUTION , 2011, 1107.3889.

[33]  E. Muller,et al.  GENESIS: A High-Resolution Code for Three-dimensional Relativistic Hydrodynamics , 1999, astro-ph/9903352.

[34]  B. Gendre,et al.  THE ULTRA-LONG GAMMA-RAY BURST 111209A: THE COLLAPSE OF A BLUE SUPERGIANT? , 2012, 1212.2392.

[35]  Petar Mimica,et al.  Which physical parameters can be inferred from the emission variability of relativistic jets , 2005 .

[36]  B. Stern,et al.  Superlong gamma-ray bursts , 2003 .

[37]  Chris L. Fryer,et al.  THE POPULATION OF HELIUM-MERGER PROGENITORS: OBSERVATIONAL PREDICTIONS , 2012, 1211.0614.

[38]  G. Bodo,et al.  The Piecewise Parabolic Method for Multidimensional Relativistic Fluid Dynamics , 2005, astro-ph/0505200.

[39]  A. Giannetti,et al.  Molecular clouds under the influence of massive stars in the Galactic Hii region G353.2+0.9 , 2011, 1111.1955.

[40]  R. Taam,et al.  Double core evolution. 7: The infall of a neutron star through the envelope of its massive star companion , 1995 .

[41]  Chris L. Fryer,et al.  The Environments around Long-Duration Gamma-Ray Burst Progenitors , 2006, astro-ph/0604432.

[42]  B. Metzger,et al.  The Proto-Magnetar Model for Gamma-Ray Bursts , 2010, 1012.0001.

[43]  Akira Mizuta,et al.  ANGULAR ENERGY DISTRIBUTION OF COLLAPSAR-JETS , 2008, 0812.4813.

[44]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[45]  Israel,et al.  Multiband light curves of tidal disruption events , 2010, 1008.4589.

[46]  S. E. Woosley,et al.  The propagation and eruption of relativistic jets from the stellar progenitors of gamma-ray bursts , 2004 .

[47]  E. Ofek,et al.  An extremely luminous X-ray outburst at the birth of a supernova , 2008, Nature.

[48]  Chris L. Fryer,et al.  Common envelope evolution: where we stand and how we can move forward , 2012, The Astronomy and Astrophysics Review.

[49]  S. Komissarov,et al.  Close binary progenitors of gamma-ray bursts , 2009, 0908.0695.

[50]  S. Komissarov,et al.  Recycling of neutron stars in common envelopes and hypernova explosions , 2010, 1012.4565.

[51]  E. Ramirez-Ruiz,et al.  SIMULATIONS OF GAMMA-RAY BURST JETS IN A STRATIFIED EXTERNAL MEDIUM: DYNAMICS, AFTERGLOW LIGHT CURVES, JET BREAKS, AND RADIO CALORIMETRY , 2011, 1111.6667.

[52]  P. Jakobsson,et al.  A NEW POPULATION OF ULTRA-LONG DURATION GAMMA-RAY BURSTS , 2013, 1302.2352.

[53]  E. Quataert,et al.  Wave‐driven mass loss in the last year of stellar evolution: setting the stage for the most luminous core‐collapse supernovae , 2012, 1202.5036.

[54]  Akira Mizuta,et al.  Collimated Jet or Expanding Outflow: Possible Origins of Gamma-Ray Bursts and X-Ray Flashes , 2006, astro-ph/0607544.

[55]  F. D. Colle,et al.  Simulations of GRB Jets in a Stratified External Medium , 2012 .