Abelian complexity of minimal subshifts

In this paper we undertake the general study of the Abelian complexity of an infinite word on a finite alphabet. We investigate both similarities and differences between the Abelian complexity and the usual subword complexity. While the Thue-Morse minimal subshift is neither characterized by its Abelian complexity nor by its subword complexity alone, we show that the subshift is completely characterized by the two complexity functions together. We give an affirmative answer to an old question of Rauzy by exhibiting a class of words whose Abelian complexity is everywhere equal to 3. We also investigate links between Abelian complexity and the existence of Abelian powers. Using van der Waerden's theorem, we show that any minimal subshift having bounded Abelian complexity contains Abelian k-powers for every positive integer k. In the case of Sturmian words, we prove something stronger: for every Sturmian word ω and positive integer k, each sufficiently long factor of ω begins with an Abelian k-power.

[1]  Gwénaël Richomme,et al.  Existence of finite test-sets for k-power-freeness of uniform morphisms , 2005, Discret. Appl. Math..

[2]  C. Reutenauer,et al.  Combinatorics on Words: Christoffel Words and Repetitions in Words , 2008 .

[3]  Kalle Saari,et al.  Everywhere alpha-repetitive sequences and Sturmian words , 2010, Eur. J. Comb..

[4]  Jean-Paul Allouche,et al.  Algebraic Irrational Binary Numbers Cannot Be Fixed Points of Non-trivial Constant Length or Primitive Morphisms☆ , 1998 .

[5]  Sébastien Ferenczi,et al.  Imbalances in Arnoux-Rauzy sequences , 2000 .

[6]  Pascal Hubert,et al.  Suites équilibrées , 2000, Theor. Comput. Sci..

[7]  G. Rauzy Suites à termes dans un alphabet fini , 1983 .

[8]  Lucian Ilie On Generalized Slenderness of Context-Free Languages , 2001, Words, Semigroups, and Transductions.

[9]  Veikko Keränen,et al.  Abelian Squares are Avoidable on 4 Letters , 1992, ICALP.

[10]  M. Lothaire,et al.  Applied Combinatorics on Words , 2005 .

[11]  Valérie Berthé,et al.  Initial powers of Sturmian sequences , 2006 .

[12]  F. Michel Dekking,et al.  Strongly Non-Repetitive Sequences and Progression-Free Sets , 1979, J. Comb. Theory, Ser. A.

[13]  Arto Salomaa,et al.  Subword histories and associated matrices , 2008, Theor. Comput. Sci..

[14]  Gwénaël Richomme,et al.  Some characterizations of Parikh matrix equivalent binary words , 2004, Inf. Process. Lett..

[15]  Y. Bugeaud,et al.  On the complexity of algebraic numbers I. Expansions in integer bases , 2005, math/0511674.

[16]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[17]  Ethan M. Coven,et al.  Sequences with minimal block growth , 2005, Mathematical systems theory.

[18]  Gwénaël Richomme,et al.  Conjectures And Results On Morphisms Generating K-Power-Free Words , 2004, Int. J. Found. Comput. Sci..

[19]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[20]  Jean-Paul Allouche,et al.  Transcendence of Sturmian or Morphic Continued Fractions , 2001 .

[21]  Arto Salomaa,et al.  A sharpening of the Parikh mapping , 2001, RAIRO Theor. Informatics Appl..

[22]  J. Shallit,et al.  Automatic Sequences: Frequency of Letters , 2003 .

[23]  Filippo Mignosi,et al.  Repetitions in the Fibonacci infinite word , 1992, RAIRO Theor. Informatics Appl..

[24]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[25]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[26]  Ethan M. Coven,et al.  Sequences with minimal block growth II , 1973, Mathematical systems theory.