A model of random surfaces with non-trivial critical behaviour

Abstract We study a model of planar random surfaces based on gaussian imbedding of simplicial lattices in a D -dimensional space. The model is shown to be equivalent to a planar π 3 theory with exponential renormalized propagator for any dimension D . Scaling laws are derived and estimates for the exponents γ and ν by strong coupling expansions are obtained. The results differ from the predictions of mean field theory. γ depends on D and is probably zero for D = 4. The Hausdorff dimension is large (greater than four) but finite. The correlation length diverges at the critical point and the two-point function does not correspond to a free field theory. In general hyperscaling is not satisfied in such models.

[1]  The planar sector of field theories , 1982 .

[2]  F. David PLANAR DIAGRAMS, TWO-DIMENSIONAL LATTICE GRAVITY AND SURFACE MODELS , 1985 .

[3]  A. Zamolodchikov On the entropy of random surfaces , 1982 .

[4]  J. Fröhlich,et al.  Critical properties of a model of planar random surfaces , 1984 .

[5]  F. David INFRARED DIVERGENCES OF MEMBRANE MODELS , 1981 .

[6]  J. Jurkiewicz,et al.  On the size of a Polyakov surface , 1984 .

[7]  T. Eguchi,et al.  The number of random surfaces on the lattice and the large-N gauge theory , 1982 .

[8]  Hadron spectrum in a Euclidean invariant regularization of QCD at strong coupling , 1985 .

[9]  J. Drouffe A model regularizing gauge fields in the strong coupling region , 1983 .

[10]  K. Symanzik DISPERSION RELATIONS AND VERTEX PROPERTIES IN PERTURBATION THEORY , 1958 .

[11]  Monte Carlo method for random surfaces , 1985 .

[12]  G. Parisi Hausdorff dimensions and gauge theories , 1979 .

[13]  J. Koplik,et al.  Some aspects of the planar perturbation series , 1977 .

[14]  D. J. Wallace,et al.  Euclidean group as a dynamical symmetry of surface fluctuations: The planar interface and critical behavior , 1979 .

[15]  Jürg Fröhlich,et al.  Diseases of triangulated random surface models, and possible cures , 1985 .

[16]  E. Marinari,et al.  SIMULATING RANDOM SURFACES , 1984 .

[17]  B. Duplantier Random surfaces in high dimensions , 1984 .

[18]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[19]  Stephen W. Hawking Zeta function regularization of path integrals in curved spacetime , 1977 .

[20]  Membrabe models and generalized Z2 gauge theories , 1980 .

[21]  Y. Okamoto,et al.  Entropy of planar random surfaces on the lattice , 1983 .

[22]  T. Eguchi,et al.  Planar random surfaces on the lattice , 1982 .

[23]  A. Billoire,et al.  A Monte Carlo simulation of random surfaces , 1984 .

[24]  D. Gross The size of random surfaces , 1984 .

[25]  J. Fröhlich,et al.  Self-avoiding and planar random surfaces on the lattice , 1983 .

[26]  Lattice gravity and strings , 1985 .

[27]  V. Kazakov Bilocal Regularization of Models of Random Surfaces , 1985 .

[28]  J. Fröhlich,et al.  Critical behaviour in a model of planar random surfaces , 1984 .