Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus

ABSTRACT Caldicellulosiruptor saccharolyticus is an extremely thermophilic, gram-positive anaerobe which ferments cellulose-, hemicellulose- and pectin-containing biomass to acetate, CO2, and hydrogen. Its broad substrate range, high hydrogen-producing capacity, and ability to coutilize glucose and xylose make this bacterium an attractive candidate for microbial bioenergy production. Here, the complete genome sequence of C. saccharolyticus, consisting of a 2,970,275-bp circular chromosome encoding 2,679 predicted proteins, is described. Analysis of the genome revealed that C. saccharolyticus has an extensive polysaccharide-hydrolyzing capacity for cellulose, hemicellulose, pectin, and starch, coupled to a large number of ABC transporters for monomeric and oligomeric sugar uptake. The components of the Embden-Meyerhof and nonoxidative pentose phosphate pathways are all present; however, there is no evidence that an Entner-Doudoroff pathway is present. Catabolic pathways for a range of sugars, including rhamnose, fucose, arabinose, glucuronate, fructose, and galactose, were identified. These pathways lead to the production of NADH and reduced ferredoxin. NADH and reduced ferredoxin are subsequently used by two distinct hydrogenases to generate hydrogen. Whole-genome transcriptome analysis revealed that there is significant upregulation of the glycolytic pathway and an ABC-type sugar transporter during growth on glucose and xylose, indicating that C. saccharolyticus coferments these sugars unimpeded by glucose-based catabolite repression. The capacity to simultaneously process and utilize a range of carbohydrates associated with biomass feedstocks is a highly desirable feature of this lignocellulose-utilizing, biofuel-producing bacterium.

[1]  Ramon Gonzalez,et al.  Global Gene Expression Differences Associated with Changes in Glycolytic Flux and Growth Rate in Escherichia coli during the Fermentation of Glucose and Xylose , 2002, Biotechnology progress.

[2]  Krzysztof Urbaniec,et al.  NON-THERMAL PRODUCTION OF PURE HYDROGEN FROM BIOMASS:HYVOLUTION , 2006 .

[3]  James R. Brown,et al.  Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. , 2001, Methods in enzymology.

[4]  P. Hallenbeck,et al.  Fundamentals of the fermentative production of hydrogen. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[5]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[6]  D. Saul,et al.  Correction of the beta-mannanase domain of the celC pseudogene from Caldocellulosiruptor saccharolyticus and activity of the gene product on kraft pulp , 1995, Applied and environmental microbiology.

[7]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[8]  Robert D. Finn,et al.  New developments in the InterPro database , 2007, Nucleic Acids Res..

[9]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[10]  J. Zeikus,et al.  Differential amylosaccharide metabolism of Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum , 1985, Journal of bacteriology.

[11]  R. Thauer LIMITATION OF MICROBIAL H2-FORMATION VIA FERMENTATION , 1977 .

[12]  M. Espinosa,et al.  The Maltose/Maltodextrin Regulon of Streptococcus pneumoniae , 1997, The Journal of Biological Chemistry.

[13]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[14]  Jian Wang,et al.  A complete sequence of the T. tengcongensis genome. , 2002, Genome research.

[15]  Jos Boekhorst,et al.  Visualization for genomics: the Microbial Genome Viewer , 2004, Bioinform..

[16]  Birte Svensson,et al.  Recent Advances in Carbohydrate Bioengineering , 1999 .

[17]  G. Olsen,et al.  CRITICA: coding region identification tool invoking comparative analysis. , 1999, Molecular biology and evolution.

[18]  D. Saul,et al.  Cloning, sequence analysis, and expression of genes encoding xylan-degrading enzymes from the thermophile "Caldocellum saccharolyticum" , 1990, Applied and environmental microbiology.

[19]  D. Cvitkovitch,et al.  Sequence, expression, and function of the gene for the nonphosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase of Streptococcus mutans , 1995, Journal of bacteriology.

[20]  Merry Buckley,et al.  Microbial Energy Conversion , 2006 .

[21]  Wolfgang Ludwig,et al.  Revised road map to the phylum Firmicutes , 2015 .

[22]  Donald A. Comfort,et al.  An Expression-Driven Approach to the Prediction of Carbohydrate Transport and Utilization Regulons in theHyperthermophilic Bacterium Thermotoga maritima , 2005, Journal of bacteriology.

[23]  R. Hedderich,et al.  Sodium Ion Pumps and Hydrogen Production in Glutamate Fermenting Anaerobic Bacteria , 2006, Journal of Molecular Microbiology and Biotechnology.

[24]  W. Hillen,et al.  Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram‐positive bacteria? , 1995, Molecular microbiology.

[25]  N. Pons,et al.  Fructose Utilization in Lactococcus lactis as a Model for Low-GC Gram-Positive Bacteria: Its Regulator, Signal, and DNA-Binding Site , 2005, Journal of bacteriology.

[26]  D. Saul,et al.  Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria , 1999 .

[27]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[28]  A. Kikuchi,et al.  Reverse gyrase—a topoisomerase which introduces positive superhelical turns into DNA , 1984, Nature.

[29]  A. Stams Metabolic interactions between anaerobic bacteria in methanogenic environments , 2004, Antonie van Leeuwenhoek.

[30]  Zsófia Kádár,et al.  Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus , 2004, Applied biochemistry and biotechnology.

[31]  Alfons J. M. Stams,et al.  Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii , 2002 .

[32]  Matthew R. Johnson,et al.  Transcriptional analysis of dynamic heat-shock response by the hyperthermophilic bacterium Thermotoga maritima , 2004, Extremophiles.

[33]  P. Claassen,et al.  Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus , 2007, Applied Microbiology and Biotechnology.

[34]  Pedro M. Coutinho,et al.  Carbohydrate-active enzymes : an integrated database approach , 1999 .

[35]  M. Hecker,et al.  Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon , 2001, Molecular microbiology.

[36]  J. Mielenz,et al.  High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway , 2007, PloS one.

[37]  Eugene W. Myers,et al.  Basic local alignment search tool. Journal of Molecular Biology , 1990 .

[38]  Pierre R. Bushel,et al.  Assessing Gene Significance from cDNA Microarray Expression Data via Mixed Models , 2001, J. Comput. Biol..

[39]  N. Saunders,et al.  Rapid extraction of bacterial genomic DNA with guanidium thiocyanate , 1989 .

[40]  Inna Dubchak,et al.  The integrated microbial genomes (IMG) system , 2005, Nucleic Acids Res..

[41]  T. Fukui,et al.  Genetic Evidence Identifying the True Gluconeogenic Fructose-1,6-Bisphosphatase in Thermococcus kodakaraensis and Other Hyperthermophiles , 2004, Journal of bacteriology.

[42]  E. Stackebrandt,et al.  Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. , 1994, FEMS microbiology letters.

[43]  S. Brunak,et al.  SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .

[44]  R. Hedderich,et al.  A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. , 2004, Microbiology.

[45]  D. Saul,et al.  celA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum , 1995, Applied Microbiology and Biotechnology.

[46]  M. Zuker,et al.  OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. , 2003, Nucleic acids research.

[47]  Fuli Li,et al.  Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri , 2007, Journal of bacteriology.

[48]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[49]  R. Wolfinger,et al.  Carbohydrate-induced Differential Gene Expression Patterns in the Hyperthermophilic Bacterium Thermotoga maritima * 210 , 2003, The Journal of Biological Chemistry.

[50]  A. Ogiwara,et al.  Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. , 2000, Nucleic acids research.

[51]  B. Ridley,et al.  Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. , 2001, Phytochemistry.