Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus
暂无分享,去创建一个
Robert M. Kelly | Servé W. M. Kengen | Alfons J. M. Stams | Karin Willquist | Karen E. Nelson | Harmen J. G. van de Werken | Emmanuel F. Mongodin | W. D. de Vos | K. Nelson | E. Mongodin | A. Stams | J. van der Oost | R. Kelly | S. Kengen | E. W. V. van Niel | Karin Willquist | H. V. D. van de Werken | M. Verhaart | John van der Oost | Willem M. de Vos | Derrick L. Lewis | Marcel R. A. Verhaart | Amy L. VanFossen | Jason D. Nichols | Heleen P. Goorissen | Ed W. J. van Niel | Donald E. Ward | D. Ward | J. Nichols | H. Goorissen
[1] Ramon Gonzalez,et al. Global Gene Expression Differences Associated with Changes in Glycolytic Flux and Growth Rate in Escherichia coli during the Fermentation of Glucose and Xylose , 2002, Biotechnology progress.
[2] Krzysztof Urbaniec,et al. NON-THERMAL PRODUCTION OF PURE HYDROGEN FROM BIOMASS:HYVOLUTION , 2006 .
[3] James R. Brown,et al. Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. , 2001, Methods in enzymology.
[4] P. Hallenbeck,et al. Fundamentals of the fermentative production of hydrogen. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.
[5] E. Myers,et al. Basic local alignment search tool. , 1990, Journal of molecular biology.
[6] D. Saul,et al. Correction of the beta-mannanase domain of the celC pseudogene from Caldocellulosiruptor saccharolyticus and activity of the gene product on kraft pulp , 1995, Applied and environmental microbiology.
[7] S. Salzberg,et al. Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.
[8] Robert D. Finn,et al. New developments in the InterPro database , 2007, Nucleic Acids Res..
[9] R. Barrangou,et al. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.
[10] J. Zeikus,et al. Differential amylosaccharide metabolism of Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum , 1985, Journal of bacteriology.
[11] R. Thauer. LIMITATION OF MICROBIAL H2-FORMATION VIA FERMENTATION , 1977 .
[12] M. Espinosa,et al. The Maltose/Maltodextrin Regulon of Streptococcus pneumoniae , 1997, The Journal of Biological Chemistry.
[13] Darren A. Natale,et al. The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.
[14] Jian Wang,et al. A complete sequence of the T. tengcongensis genome. , 2002, Genome research.
[15] Jos Boekhorst,et al. Visualization for genomics: the Microbial Genome Viewer , 2004, Bioinform..
[16] Birte Svensson,et al. Recent Advances in Carbohydrate Bioengineering , 1999 .
[17] G. Olsen,et al. CRITICA: coding region identification tool invoking comparative analysis. , 1999, Molecular biology and evolution.
[18] D. Saul,et al. Cloning, sequence analysis, and expression of genes encoding xylan-degrading enzymes from the thermophile "Caldocellum saccharolyticum" , 1990, Applied and environmental microbiology.
[19] D. Cvitkovitch,et al. Sequence, expression, and function of the gene for the nonphosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase of Streptococcus mutans , 1995, Journal of bacteriology.
[20] Merry Buckley,et al. Microbial Energy Conversion , 2006 .
[21] Wolfgang Ludwig,et al. Revised road map to the phylum Firmicutes , 2015 .
[22] Donald A. Comfort,et al. An Expression-Driven Approach to the Prediction of Carbohydrate Transport and Utilization Regulons in theHyperthermophilic Bacterium Thermotoga maritima , 2005, Journal of bacteriology.
[23] R. Hedderich,et al. Sodium Ion Pumps and Hydrogen Production in Glutamate Fermenting Anaerobic Bacteria , 2006, Journal of Molecular Microbiology and Biotechnology.
[24] W. Hillen,et al. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram‐positive bacteria? , 1995, Molecular microbiology.
[25] N. Pons,et al. Fructose Utilization in Lactococcus lactis as a Model for Low-GC Gram-Positive Bacteria: Its Regulator, Signal, and DNA-Binding Site , 2005, Journal of bacteriology.
[26] D. Saul,et al. Molecular diversity of thermophilic cellulolytic and hemicellulolytic bacteria , 1999 .
[27] S. Salzberg,et al. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.
[28] A. Kikuchi,et al. Reverse gyrase—a topoisomerase which introduces positive superhelical turns into DNA , 1984, Nature.
[29] A. Stams. Metabolic interactions between anaerobic bacteria in methanogenic environments , 2004, Antonie van Leeuwenhoek.
[30] Zsófia Kádár,et al. Yields from glucose, xylose, and paper sludge hydrolysate during hydrogen production by the extreme thermophile Caldicellulosiruptor saccharolyticus , 2004, Applied biochemistry and biotechnology.
[31] Alfons J. M. Stams,et al. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii , 2002 .
[32] Matthew R. Johnson,et al. Transcriptional analysis of dynamic heat-shock response by the hyperthermophilic bacterium Thermotoga maritima , 2004, Extremophiles.
[33] P. Claassen,et al. Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus , 2007, Applied Microbiology and Biotechnology.
[34] Pedro M. Coutinho,et al. Carbohydrate-active enzymes : an integrated database approach , 1999 .
[35] M. Hecker,et al. Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon , 2001, Molecular microbiology.
[36] J. Mielenz,et al. High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway , 2007, PloS one.
[37] Eugene W. Myers,et al. Basic local alignment search tool. Journal of Molecular Biology , 1990 .
[38] Pierre R. Bushel,et al. Assessing Gene Significance from cDNA Microarray Expression Data via Mixed Models , 2001, J. Comput. Biol..
[39] N. Saunders,et al. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate , 1989 .
[40] Inna Dubchak,et al. The integrated microbial genomes (IMG) system , 2005, Nucleic Acids Res..
[41] T. Fukui,et al. Genetic Evidence Identifying the True Gluconeogenic Fructose-1,6-Bisphosphatase in Thermococcus kodakaraensis and Other Hyperthermophiles , 2004, Journal of bacteriology.
[42] E. Stackebrandt,et al. Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. , 1994, FEMS microbiology letters.
[43] S. Brunak,et al. SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .
[44] R. Hedderich,et al. A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. , 2004, Microbiology.
[45] D. Saul,et al. celA, another gene coding for a multidomain cellulase from the extreme thermophile Caldocellum saccharolyticum , 1995, Applied Microbiology and Biotechnology.
[46] M. Zuker,et al. OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. , 2003, Nucleic acids research.
[47] Fuli Li,et al. Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri , 2007, Journal of bacteriology.
[48] A. Krogh,et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.
[49] R. Wolfinger,et al. Carbohydrate-induced Differential Gene Expression Patterns in the Hyperthermophilic Bacterium Thermotoga maritima * 210 , 2003, The Journal of Biological Chemistry.
[50] A. Ogiwara,et al. Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. , 2000, Nucleic acids research.
[51] B. Ridley,et al. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. , 2001, Phytochemistry.