Estimation of a smooth function is considered when observations on this function added with Gaussian errors are observed. The problem is formulated as a general linear model, and a hierarchical Bayesian approach is then used to study it. Credible bands are also developed for the function. Sensitivity analysis is conducted to determine the influence of the choice of priors on hyperparameters. Finally, the methodology is illustrated using real and simulated examples where it is compared with classical cubic splines. It is also shown that our approach provides a Bayesian solution to some problems in discrete time series.
Nous etudierons le lissage d'une fonction lorsque les observations de cette fonction sont sujettes a des erreurs gaussiennes. Le probleme sera formule a l'aide d'un modele lineaire et nous utiliserons l'approche bayesienne hierarchique pour l'etudier. De plus nous developperons des bandes de credibilite pour le lissage. Une analyse de sensibilite sera faite pour determiner l'influence sur le lissage de la densite a priori sur les hyperparametres. Pour conclure, nous illustrerons cette nouvelle methodologie a l'aide de donnees reelles et d'une simulation; nous comparerons les resultats obtenus avec ceux fournis par les splines cubiques. Il sera aussi montre que cette approche foumit une solution bayesienne a quelques problemes en series chronologiques.
[1]
Prem K. Goel,et al.
Information About Hyperparamters in Hierarchical Models
,
1981
.
[2]
M. Degroot,et al.
Information about Hyperparameters in Hierarchical Models
,
1981
.
[3]
F. Nebebe,et al.
Bayes and empirical Bayes shrinkage estimation of regression coefficients
,
1986
.
[4]
A. O'Hagan,et al.
Curve Fitting and Optimal Design for Prediction
,
1978
.
[5]
G. Wahba.
Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression
,
1978
.
[6]
D. Lindley,et al.
Bayes Estimates for the Linear Model
,
1972
.
[7]
J. Zidek,et al.
Bayesian nonparametric smoothers for regular processes
,
1988
.
[8]
G. Kitagawa,et al.
A Smoothness Priors–State Space Modeling of Time Series with Trend and Seasonality
,
1984
.
[9]
Calyampudi R. Rao,et al.
A strongly consistent procedure for model selection in a regression problem
,
1989
.