SUBSPACE IDENTIFICATION OF MULTIVARIABLE HAMMERSTEIN AND WIENER MODELS

Abstract In this paper, subspace-based algorithms for the simultaneous identification of the linear and nonlinear parts of multivariable Hammerstein and Wiener models are presented. The proposed algorithms consist basically of two steps. The first one is a standard (linear) subspace algorithm applied to an equivalent linear system whose inputs (respectively outputs) are filtered (by the nonlinear functions describing the static nonlinearities) versions of the original inputs (respectively outputs). The second step consists in a 2-norm minimization problem which is solved via a Singular Value Decomposition.

[1]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[2]  Stephen A. Billings,et al.  Identi cation of a class of nonlinear systems using correlation analysis , 1978 .

[3]  Stephen A. Billings,et al.  Identi cation of nonlinear systems-A survey , 1980 .

[4]  P. Stoica On the convergence of an iterative algorithm used for Hammerstein system identification , 1981 .

[5]  Stephen A. Billings,et al.  Identification of systems containing linear dynamic and static nonlinear elements , 1982, Autom..

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  Steven C. Bass,et al.  Adaptive noise cancellation for a class of nonlinear, dynamic reference channels , 1985 .

[8]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[9]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[10]  Wallace E. Larimore,et al.  Canonical variate analysis in identification, filtering, and adaptive control , 1990, 29th IEEE Conference on Decision and Control.

[11]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .

[12]  Torbjörn Wigren,et al.  Recursive prediction error identification using the nonlinear wiener model , 1993, Autom..

[13]  Dale E. Seborg,et al.  Adaptive nonlinear control of a pH neutralization process , 1994, IEEE Trans. Control. Syst. Technol..

[14]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[15]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[16]  W. Greblicki Nonparametric identification of Wiener systems by orthogonal series , 1994, IEEE Trans. Autom. Control..

[17]  T. Wigren Convergence analysis of recursive identification algorithms based on the nonlinear Wiener model , 1994, IEEE Trans. Autom. Control..

[18]  M. Boutayeb,et al.  Recursive identification method for MISO Wiener-Hammerstein model , 1995, IEEE Trans. Autom. Control..

[19]  M. Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[20]  K. Poolla,et al.  New results for Hammerstein system identification , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[21]  W. R. Cluett,et al.  A new approach to the identification of pH processes based on the Wiener model , 1995 .

[22]  Mats Viberg,et al.  Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..

[23]  M. Verhaegen,et al.  Identifying MIMO Hammerstein systems in the context of subspace model identification methods , 1996 .

[24]  A. Palazoglu,et al.  Nolinear model predictive control using Hammerstein models , 1997 .

[25]  Dale E. Seborg,et al.  Feedback linearizing control , 1997 .

[26]  E. Bai An optimal two stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998 .

[27]  Bart De Moor,et al.  Subspace identification of bilinear systems subject to white inputs , 1999, IEEE Trans. Autom. Control..

[28]  J. Maciejowski,et al.  Subspace Identification Method for Combined Deterministic-Stochastic Bilinear Systems , 2000 .

[29]  R. Pearson,et al.  Gray-box identification of block-oriented nonlinear models , 2000 .

[30]  J. Maciejowski,et al.  An improved subspace identification method for bilinear systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[31]  Laura Giarré,et al.  Identification of approximated hammerstein models in a worst-case setting , 2002, IEEE Trans. Autom. Control..

[32]  E. Baeyens,et al.  Wiener model identification and predictive control of a pH neutralisation process , 2004 .