Hybridised energy storage systems for automotive powertrain applications

.................................................................................................................................................. ii Acknowledgements ................................................................................................................................ iv Project Outputs ....................................................................................................................................... v Academic Journal Publications ........................................................................................................... v Conference Presentations ................................................................................................................... v Poster Presentations ........................................................................................................................... v Awards ................................................................................................................................................ v Tutorials .............................................................................................................................................. v List of Figures .......................................................................................................................................... x List of Tables .........................................................................................................................................xiv Nomenclature & Acronyms...................................................................................................................xvi 1.0 Introduction ...................................................................................................................................... 1 1.1 The need for alternate energy storage systems in automotive powertrains ............................... 1 1.2 Thesis Aims .................................................................................................................................... 3 1.2.1 Research Questions and Working Hypothesis ....................................................................... 3 1.2.2 Scope of Work ........................................................................................................................ 3 1.3 Thesis Structure ............................................................................................................................ 4 2.0 Experimental Methodology & Modelling Requirements .................................................................. 6 2.1 Experimental Methodology .......................................................................................................... 6 2.1.1 Cell Setup ............................................................................................................................... 6 2.1.2 Experimental Techniques ....................................................................................................... 9 2.2 Modelling Targets and Requirements ......................................................................................... 12 3.0 Supercapacitors............................................................................................................................... 13 3.

[1]  P. Kurzweil,et al.  Electrochemical stability of organic electrolytes in supercapacitors: Spectroscopy and gas analysis of decomposition products , 2008 .

[2]  Y. Yanga,et al.  Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes , 2008 .

[3]  Xianguo Li,et al.  Measurements of heat generation in prismatic Li-ion batteries , 2014 .

[4]  Tsuyoshi Sasaki,et al.  Capacity-Fading Mechanisms of LiNiO2-Based Lithium-Ion Batteries II. Diagnostic Analysis by Electron Microscopy and Spectroscopy , 2009 .

[5]  Bobby Philip,et al.  A generalized multi-dimensional mathematical model for charging and discharging processes in a supercapacitor , 2014 .

[6]  D. Aurbach,et al.  Cation Trapping in Highly Porous Carbon Electrodes for EDLC Cells , 2008 .

[7]  Li Jia,et al.  A pseudo three-dimensional electrochemical–thermal model of a prismatic LiFePO4 battery during discharge process , 2015 .

[8]  Chester G. Motloch,et al.  Power fade and capacity fade resulting from cycle-life testing of Advanced Technology Development Program lithium-ion batteries , 2003 .

[9]  G. C. Paap,et al.  The Application of Super Capacitors to relieve Battery-storage systems in Autonomous Renewable Energy Systems , 2007, 2007 IEEE Lausanne Power Tech.

[10]  Martha Schreiber,et al.  Current Collectors for Positive Electrodes of Lithium-Based Batteries , 2005 .

[11]  F. Mueller-Langer,et al.  Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term , 2007 .

[12]  M. Péra,et al.  Review of characterization methods for supercapacitor modelling , 2014 .

[13]  Andrew McGordon,et al.  A study on the impact of lithium-ion cell relaxation on electrochemical impedance spectroscopy , 2015 .

[14]  Alireza Khaligh,et al.  Influence of Battery/Ultracapacitor Energy-Storage Sizing on Battery Lifetime in a Fuel Cell Hybrid Electric Vehicle , 2009, IEEE Transactions on Vehicular Technology.

[15]  Billy Wu Fuel cell hybrid electric vehicle powertrain modelling and testing , 2013 .

[16]  S. C. Chen,et al.  Thermal analysis of lithium-ion batteries , 2005 .

[17]  A. Takshi,et al.  Modeling and simulation study of the self-discharge in supercapacitors in presence of a blocking layer , 2015 .

[18]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[19]  Hongwen He,et al.  Comparison study on the battery models used for the energy management of batteries in electric vehicles , 2012 .

[20]  Jake Christensen,et al.  Modeling Diffusion-Induced Stress in Li-Ion Cells with Porous Electrodes , 2010 .

[21]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[22]  J. Fergus,et al.  Lithium Ion Battery Anode Aging Mechanisms , 2013, Materials.

[23]  G. L. Henriksen,et al.  Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries , 2004 .

[24]  C. Pals,et al.  Thermal modeling of the lithium/polymer battery , 1994 .

[25]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[26]  Ralph E. White,et al.  Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells , 2004 .

[27]  Y. Baghzouz,et al.  Effectiveness of battery-supercapacitor combination in electric vehicles , 2003, 2003 IEEE Bologna Power Tech Conference Proceedings,.

[28]  Amrane Oukaour,et al.  Supercapacitor ageing at constant temperature and constant voltage and thermal shock , 2010, Microelectron. Reliab..

[29]  Eckhard Karden,et al.  Energy storage devices for future hybrid electric vehicles , 2007 .

[30]  Alexander Wokaun,et al.  A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages , 2010 .

[31]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[32]  Mark W. Verbrugge,et al.  Microstructural Analysis and Mathematical Modeling of Electric Double-Layer Supercapacitors , 2005 .

[33]  R.W. De Doncker,et al.  Modeling the dynamic behavior of supercapacitors using impedance spectroscopy , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).

[34]  Lixia Yuan,et al.  Development and challenges of LiFePO4 cathode material for lithium-ion batteries , 2011 .

[35]  Guy Friedrich,et al.  Thermal modeling of large prismatic LiFePO4/graphite battery. Coupled thermal and heat generation models for characterization and simulation , 2015 .

[36]  R. D. Levie,et al.  On porous electrodes in electrolyte solutions—IV , 1963 .

[37]  A. Cruden,et al.  Strategies for control of a battery/supercapacitor system in an electric vehicle , 2008, 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion.

[38]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[39]  A. Lasia Electrochemical Impedance Spectroscopy and its Applications , 2014 .

[40]  Zheng You,et al.  Analysis of Charge Redistribution During Self-discharge of Double-Layer Supercapacitors , 2016, Journal of Electronic Materials.

[41]  Margret Wohlfahrt-Mehrens,et al.  Aging mechanisms of lithium cathode materials , 2004 .

[42]  R. Kötz,et al.  Cycle versus voltage hold – Which is the better stability test for electrochemical double layer capacitors? , 2013 .

[43]  Dinh Vinh Do,et al.  Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery , 2010 .

[44]  Ehsan Adib,et al.  Analysis and design of a high efficiency bidirectional DC-DC converter for battery and ultracapacitor applications , 2010, 2010 IEEE International Conference on Power and Energy.

[45]  Mehrdad Ehsani,et al.  Hybrid Electric Vehicles: Architecture and Motor Drives , 2007, Proceedings of the IEEE.

[46]  H. Gualous,et al.  Self-Discharge Characterization and Modeling of Electrochemical Capacitor Used for Power Electronics Applications , 2009, IEEE Transactions on Power Electronics.

[47]  Ali Emadi,et al.  Effects of an Ultra-Capacitor and Battery Energy Storage System in a Hybrid Electric Vehicle , 2005 .

[48]  Pierre-Louis Taberna,et al.  High power density electrodes for Carbon supercapacitor applications , 2005 .

[49]  Jianjun Niu,et al.  Comparative studies of self-discharge by potential decay and float-current measurements at C double-layer capacitor and battery electrodes , 2004 .

[50]  J. Graydon,et al.  Charge redistribution and ionic mobility in the micropores of supercapacitors , 2014 .

[51]  S Latham,et al.  A reference book of driving cycles for use in the measurement of road vehicle emissions , 2009 .

[52]  Ralph E. White,et al.  Mathematical modeling of the capacity fade of Li-ion cells , 2003 .

[53]  Eric Woirgard,et al.  Quantification of ageing of ultracapacitors during cycling tests with current profile characteristics of hybrid and electric vehicles applications , 2007 .

[54]  Diana Golodnitsky,et al.  The sei model—application to lithium-polymer electrolyte batteries , 1995 .

[55]  M. Marinescu,et al.  Electrochemical double layer capacitor electro-thermal modelling , 2016 .

[56]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[57]  John M. Miller,et al.  Battery and ultracapacitor combinations — Where should the converter go? , 2010, 2010 IEEE Vehicle Power and Propulsion Conference.

[58]  Chaoyang Wang,et al.  Cycling degradation of an automotive LiFePO4 lithium-ion battery , 2011 .

[59]  Heinz Wenzl,et al.  Degradation of Lithium Ion Batteries under Complex Conditions of Use , 2012 .

[60]  R. Kötz,et al.  Temperature behavior and impedance fundamentals of supercapacitors , 2006 .

[61]  J. Newman,et al.  Heats of mixing and of entropy in porous insertion electrodes , 2003 .

[62]  Marshall Miller,et al.  The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications , 2011 .

[63]  Ui Seong Kim,et al.  Modelling of the thermal behaviour of an ultracapacitor for a 42-V automotive electrical system , 2008 .

[64]  Guy Clerc,et al.  Study of Supercapacitor Aging and Lifetime Estimation According to Voltage, Temperature, and RMS Current , 2014, IEEE Transactions on Industrial Electronics.

[65]  Hamid Gualous,et al.  42 V Power Net with supercapacitor and battery for automotive applications , 2005 .

[66]  Thomas A. Stuart,et al.  An ultracapacitor circuit for reducing sulfation in lead acid batteries for Mild Hybrid Electric Vehicles , 2006 .

[67]  Jun Liu,et al.  Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management , 2010 .

[68]  Ali Emadi,et al.  ADVISOR-based model of a battery and an ultra-capacitor energy source for hybrid electric vehicles , 2004, IEEE Transactions on Vehicular Technology.

[69]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[70]  Yuichiro Asakawa,et al.  Degradation Responses of Activated-Carbon-Based EDLCs for Higher Voltage Operation and Their Factors , 2009 .

[71]  Ralph E. White,et al.  Power and life extension of battery-ultracapacitor hybrids , 2002 .

[72]  Alexander Wokaun,et al.  Electrochemical characterization of single-walled carbon nanotubes for electrochemical double layer capacitors using non-aqueous electrolyte , 2009 .

[73]  Dirk Uwe Sauer,et al.  Detailed analysis of the self-discharge of supercapacitors , 2011 .

[74]  Ilias Belharouak,et al.  Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications , 2003 .

[75]  J. Selman,et al.  Electrochemical‐Calorimetric Studies of Lithium‐Ion Cells , 1998 .

[76]  Anna G. Stefanopoulou,et al.  Preliminary results on identification of an electro-thermal model for low temperature and high power operation of cylindrical double layer ultracapacitors , 2014, 2014 American Control Conference.

[77]  Jim P. Zheng,et al.  Hybrid power sources for pulsed current applications , 2001 .

[78]  G. P. Pandey,et al.  Solid-State Supercapacitors Based on Pulse Polymerized Poly(3,4-ethylenedioxythiophene) Electrodes and Ionic Liquid Gel Polymer Electrolyte , 2012 .

[79]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[80]  Xiulin Zou,et al.  Hybrid power supplies: A capacitor-assisted battery , 2006 .

[81]  Naehyuck Chang,et al.  Constant-current regulator-based battery-supercapacitor hybrid architecture for high-rate pulsed load applications☆☆☆ , 2012 .

[82]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[83]  D. Sauer,et al.  Modelling the effects of charge redistribution during self-discharge of supercapacitors , 2010 .

[84]  D. Kammen,et al.  Economic and environmental evaluation of compressed-air cars. , 2009 .

[85]  Pablo Sanchis,et al.  Electro-thermal modelling of a supercapacitor and experimental validation , 2014 .

[86]  Taejung Yeo,et al.  Non-isothermal electrochemical model for lithium-ion cells with composite cathodes , 2015 .

[87]  Yury Gogotsi,et al.  Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[88]  Daniel P. Abraham,et al.  Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells , 2002 .

[89]  Andrew Cruden,et al.  Optimizing for Efficiency or Battery Life in a Battery/Supercapacitor Electric Vehicle , 2012, IEEE Transactions on Vehicular Technology.

[90]  Giovanni Lutzemberger,et al.  State of charge estimation of high power lithium iron phosphate cells , 2014 .

[91]  Dongsheng Ma,et al.  The governing self-discharge processes in activated carbon fabric-based supercapacitors with different organic electrolytes , 2011 .

[92]  Kurt Maute,et al.  Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries , 2009 .

[93]  R.A. Dougal,et al.  Power enhancement of an actively controlled battery/ultracapacitor hybrid , 2005, IEEE Transactions on Power Electronics.

[94]  R. Gallay,et al.  Interfacial Capacitance and Electronic Conductance of Activated Carbon Double-Layer Electrodes , 2004 .

[95]  Chaoyang Wang,et al.  Heating strategies for Li-ion batteries operated from subzero temperatures , 2013 .

[96]  Yimin Gao,et al.  Hybridized Electric Energy Storage Systems for Hybrid Electric Vehicles , 2006, 2006 IEEE Vehicle Power and Propulsion Conference.

[97]  Jean-Michel Vinassa,et al.  Characterization methods and modelling of ultracapacitors for use as peak power sources , 2007 .

[98]  D. Doerffel,et al.  A critical review of using the peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries , 2006 .

[99]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[100]  Ross Drummond,et al.  Low-Order Mathematical Modelling of Electric Double Layer Supercapacitors Using Spectral Methods , 2014, ArXiv.

[101]  Mario Paolone,et al.  Improvement of Dynamic Modeling of Supercapacitor by Residual Charge Effect Estimation , 2014, IEEE Transactions on Industrial Electronics.

[102]  Wei He,et al.  State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures , 2014 .

[103]  Ehsan Adib,et al.  Soft switching bidirectional DCDC converter for ultracapacitorbatteries interface , 2009 .

[104]  Joo-Young Go,et al.  Solid-State Transport of Lithium in Lithium-Ion-Battery Positive Electrodes , 2011 .

[105]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[106]  Wei Sun,et al.  An Adaptive Gain Nonlinear Observer for State of Charge Estimation of Lithium-Ion Batteries in Electric Vehicles , 2014 .

[107]  F. Béguin,et al.  Supercapacitors : materials, systems, and applications , 2013 .

[108]  Tsuyoshi Sasaki,et al.  Capacity-Fading Mechanisms of LiNiO2-Based Lithium-Ion Batteries I. Analysis by Electrochemical and Spectroscopic Examination , 2009 .

[109]  Dirk Uwe Sauer,et al.  Heat generation in double layer capacitors , 2006 .

[110]  Kandler Smith,et al.  Modeling detailed chemistry and transport for solid-electrolyte-interface (SEI) films in Li–ion batteries , 2011 .

[111]  Peter H. L. Notten,et al.  Adaptive thermal modeling of Li-ion batteries , 2013 .

[112]  Yury Gogotsi,et al.  Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors , 2012 .

[113]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[114]  Christopher Depcik,et al.  Expanding the Peukert equation for battery capacity modeling through inclusion of a temperature dependency , 2013 .

[115]  Jun Liu,et al.  Stabilization of Silicon Anode for Li-Ion Batteries , 2010 .

[116]  Odne Stokke Burheim,et al.  In-situ and ex-situ measurements of thermal conductivity of supercapacitors , 2014 .

[117]  Hamid Gualous,et al.  Thermal modeling and heat management of supercapacitor modules for vehicle applications , 2009 .

[118]  Bernard A. Boukamp,et al.  Electrochemical impedance spectroscopy in solid state ionics: recent advances , 2004 .

[119]  R. Rudramoorthy,et al.  Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles , 2010 .

[120]  Eric Bideaux,et al.  Thermal Network Model of Supercapacitors Stack , 2012, IEEE Transactions on Industrial Electronics.

[121]  Hamid Gualous,et al.  DC/DC Converter Design for Supercapacitor and Battery Power Management in Hybrid Vehicle Applications—Polynomial Control Strategy , 2010, IEEE Transactions on Industrial Electronics.

[122]  J. Bernard,et al.  Simplified Electrochemical and Thermal Model of LiFePO4-Graphite Li-Ion Batteries for Fast Charge Applications , 2012 .

[123]  Jean-Michel Vinassa,et al.  Impact of high frequency current ripple on supercapacitors ageing through floating ageing tests , 2013, Microelectron. Reliab..

[124]  Bernd Eckardt,et al.  Automotive Powertrain DC/DC Converter with 25kW/dm(exp3) by using SiC Diodes , 2006 .

[125]  Xiaosong Huang,et al.  A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery , 2010 .

[126]  Ellen Ivers-Tiffée,et al.  A novel and precise measuring method for the entropy of lithium-ion cells: ΔS via electrothermal impedance spectroscopy , 2014 .

[127]  N. Tanaka Modeling and simulation of thermo-electrochemistry of thermal runaway in lithium-ion batteries , 2015 .

[128]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[129]  K. Smith,et al.  Three dimensional thermal-, electrical-, and electrochemical-coupled model for cylindrical wound large format lithium-ion batteries , 2013 .

[130]  Jennifer Black,et al.  Prediction of the self-discharge profile of an electrochemical capacitor electrode in the presence of both activation-controlled discharge and charge redistribution , 2010 .

[131]  John Miller Trends in Vehicle Energy Storage Systems: Batteries and Ultracapacitors to Unite , 2008, 2008 IEEE Vehicle Power and Propulsion Conference.

[132]  Bernard Multon,et al.  Enhanced Aging Model for Supercapacitors Taking Into Account Power Cycling: Application to the Sizing of an Energy Storage System in a Direct Wave Energy Converter , 2015, IEEE Transactions on Industry Applications.

[133]  Clark Hochgraf,et al.  Effect of ultracapacitor-modified PHEV protocol on performance degradation in lithium-ion cells , 2014 .

[134]  Laurent Pilon,et al.  First-order thermal model of commercial EDLCs , 2014 .

[135]  Alon Kuperman,et al.  A frequency domain approach to analyzing passive battery–ultracapacitor hybrids supplying periodic pulsed current loads , 2011 .

[136]  Paul Shinn,et al.  Requirements for future automotive batteries – a snapshot , 2005 .

[137]  Alexander Wokaun,et al.  Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic , 2011 .

[138]  B. Wei,et al.  Tunable self-discharge process of carbon nanotube based supercapacitors , 2014 .

[139]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[140]  H. Gualous,et al.  Supercapacitor Thermal Modeling and Characterization in Transient State for Industrial Applications , 2009, IEEE Transactions on Industry Applications.

[141]  H. Gualous,et al.  Supercapacitor Characterization and Thermal Modelling With Reversible and Irreversible Heat Effect , 2011, IEEE Transactions on Power Electronics.

[142]  Zhenhong Lin,et al.  Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data , 2014 .

[143]  G. Venugopal Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries , 2001 .

[144]  Andrew C. Chu,et al.  Comparison of commercial supercapacitors and high-power lithium-ion batteries for power-assist applications in hybrid electric vehicles , 2002 .

[145]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[146]  Ji‐Guang Zhang,et al.  Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries , 2009 .

[147]  Volker Presser,et al.  Thermal conductivity and temperature profiles in carbon electrodes for supercapacitors , 2014 .

[148]  A. Kuperman,et al.  Design of a Semiactive Battery-Ultracapacitor Hybrid Energy Source , 2013, IEEE Transactions on Power Electronics.

[149]  Doron Aurbach,et al.  On the behavior of different types of graphite anodes , 2003 .

[150]  Subbarao Surampudi,et al.  Effects of SEI on the kinetics of lithium intercalation , 2001 .

[151]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[152]  O. Briat,et al.  Ultracapacitors self discharge modelling using a physical description of porous electrode impedance , 2008, 2008 IEEE Vehicle Power and Propulsion Conference.

[153]  Impedance of porous electrodes , 1995 .

[154]  Shinichi Kinoshita,et al.  In situ electrochemical impedance spectroscopy to investigate negative electrode of lithium-ion rechargeable batteries , 2004 .

[155]  Xiangyun Song,et al.  A comprehensive understanding of electrode thickness effects on the electrochemical performances of Li-ion battery cathodes , 2012 .

[156]  Robert J. Kee,et al.  Thermodynamically consistent modeling of elementary electrochemistry in lithium-ion batteries , 2010 .

[157]  Irene M. Plitz,et al.  A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications , 2003 .

[158]  Jean-Michel Vinassa,et al.  Thermal cycling impacts on supercapacitor performances during calendar ageing , 2013, Microelectron. Reliab..

[159]  Arun S. Mujumdar,et al.  Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery , 2012 .

[160]  Cuong Ton-That,et al.  Self-discharge of carbon-based supercapacitors with organic electrolytes , 2000 .

[161]  A. Wokaun,et al.  A reliable determination method of stability limits for electrochemical double layer capacitors , 2013 .

[162]  Enrico Tironi,et al.  New Full-Frequency-Range Supercapacitor Model With Easy Identification Procedure , 2013, IEEE Transactions on Industrial Electronics.

[163]  M. Melaina Initiating hydrogen infrastructures: preliminary analysis of a sufficient number of initial hydrogen stations in the US , 2003 .

[164]  Ehsan Adib,et al.  A bidirectional soft switched ultracapacitor interface circuit for hybrid electric vehicles , 2008 .

[165]  A. Stein,et al.  Unbiased Quantification of the Electrochemical Stability Limits of Electrolytes and Ionic Liquids , 2015 .

[166]  Godfrey Sikha,et al.  Performance optimization of a battery-capacitor hybrid system , 2004 .

[167]  Mark E. Orazem,et al.  Electrochemical Impedance Spectroscopy: Orazem/Electrochemical , 2008 .

[168]  V. Presser,et al.  Molecular Insights into Carbon Supercapacitors Based on Room-Temperature Ionic Liquids , 2013 .

[169]  Alexander Wokaun,et al.  Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages , 2010 .

[170]  A. Emadi,et al.  A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles , 2012, IEEE Transactions on Power Electronics.

[171]  Michal Frivaldsky,et al.  Simple and accurate thermal simulation model of supercapacitor suitable for development of module solutions , 2014 .

[172]  Robert Kostecki,et al.  Surface structural disordering in graphite upon lithium intercalation/deintercalation , 2010, 1108.0846.

[173]  Dominique Massiot,et al.  Causes of supercapacitors ageing in organic electrolyte , 2007 .

[174]  Ozan Toprakci,et al.  A review of recent developments in membrane separators for rechargeable lithium-ion batteries , 2014 .

[175]  M. Ceraolo,et al.  High fidelity electrical model with thermal dependence for characterization and simulation of high power lithium battery cells , 2012, 2012 IEEE International Electric Vehicle Conference.

[176]  Matthew B. Pinson,et al.  Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction , 2012, 1210.3672.

[177]  Kristina Edström,et al.  A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries , 2006 .

[178]  M. Landstorfer,et al.  A Mathematical Model for All Solid-State Lithium-Ion Batteries , 2010 .

[179]  Zhian Zhang,et al.  Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading , 2013 .

[180]  Jennifer Bauman,et al.  A Comparative Study of Fuel-Cell–Battery, Fuel-Cell–Ultracapacitor, and Fuel-Cell–Battery–Ultracapacitor Vehicles , 2008, IEEE Transactions on Vehicular Technology.

[181]  J. Newman,et al.  Heat‐Generation Rate and General Energy Balance for Insertion Battery Systems , 1997 .

[182]  Gi-Heon Kim,et al.  A three-dimensional multi-physics model for a Li-ion battery , 2013 .

[183]  Yonghuang Ye,et al.  Electrochemical–thermal analysis of 18650 Lithium Iron Phosphate cell , 2013 .

[184]  Min Chen,et al.  Accurate electrical battery model capable of predicting runtime and I-V performance , 2006, IEEE Transactions on Energy Conversion.

[185]  Alon Kuperman,et al.  Battery–ultracapacitor hybrids for pulsed current loads: A review , 2011 .

[186]  V. Khomenko,et al.  Characterization of silicon-and carbon-based composite anodes for lithium-ion batteries , 2007 .

[187]  Ralph E. White,et al.  Capacity fade analysis of a lithium ion cell , 2008 .

[188]  David Howell US DOE Electric Vehicle Battery R&D Progress and Plans , 2016 .