Pathogen-induced changes in floral scent may increase honeybee-mediated dispersal of Erwinia amylovora

[1]  A. Cellini,et al.  Pathways of flower infection and pollen-mediated dispersion of Pseudomonas syringae pv. actinidiae, the causal agent of kiwifruit bacterial canker , 2018, Horticulture Research.

[2]  Rouhallah Sharifi,et al.  Sniffing bacterial volatile compounds for healthier plants. , 2018, Current opinion in plant biology.

[3]  D. Grasso,et al.  Nectar in Plant–Insect Mutualistic Relationships: From Food Reward to Partner Manipulation , 2018, Front. Plant Sci..

[4]  R. Sankaranarayanan,et al.  A mutation in an exoglucanase of Xanthomonas oryzae pv. oryzae, which confers an endo mode of activity, affects bacterial virulence, but not the induction of immune responses, in rice. , 2018, Molecular plant pathology.

[5]  S. Eigenbrode,et al.  Insect-Borne Plant Pathogens and Their Vectors: Ecology, Evolution, and Complex Interactions. , 2018, Annual review of entomology.

[6]  S. Rands,et al.  The diversity of floral temperature patterns, and their use by pollinators , 2017, eLife.

[7]  F. Biasioli,et al.  Diel rhythms in the volatile emission of apple and grape foliage. , 2017, Phytochemistry.

[8]  L. S. Adler,et al.  Floral Scent Mimicry and Vector-Pathogen Associations in a Pseudoflower-Inducing Plant Pathogen System , 2016, PloS one.

[9]  V. Gauci,et al.  Methods in plant foliar volatile organic compounds research1 , 2015, Applications in plant sciences.

[10]  D. Suckling,et al.  Kiwifruit Flower Odor Perception and Recognition by Honey Bees, Apis mellifera. , 2015, Journal of agricultural and food chemistry.

[11]  F. Schiestl,et al.  Bees use honest floral signals as indicators of reward when visiting flowers. , 2015, Ecology letters.

[12]  Rebecca E. Irwin,et al.  Arranging the bouquet of disease: floral traits and the transmission of plant and animal pathogens. , 2014, Ecology letters.

[13]  J. Biesmeijer,et al.  Avoiding a bad apple: Insect pollination enhances fruit quality and economic value☆ , 2014, Agriculture, ecosystems & environment.

[14]  T. Giraud,et al.  The domestication and evolutionary ecology of apples. , 2014, Trends in genetics : TIG.

[15]  R. Gomulkiewicz,et al.  Conditional Vector Preference Aids the Spread of Plant Pathogens: Results from a Model , 2013, Environmental entomology.

[16]  F. Ramírez,et al.  Apple pollination: A review , 2013 .

[17]  Daniel Robert,et al.  Detection and Learning of Floral Electric Fields by Bumblebees , 2013, Science.

[18]  J. Peñuelas,et al.  Floral volatile organic compounds: Between attraction and deterrence of visitors under global change , 2013 .

[19]  R. Ohsawa,et al.  Variation in floral scent compounds recognized by honeybees in Brassicaceae crop species , 2012, Breeding science.

[20]  T. H. Smits,et al.  Development of species-, strain- and antibiotic biosynthesis-specific quantitative PCR assays for Pantoea agglomerans as tools for biocontrol monitoring. , 2012, Journal of microbiological methods.

[21]  Sam P. Brown,et al.  Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control , 2012, Trends in microbiology.

[22]  J. Gershenzon,et al.  The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. , 2012, The New phytologist.

[23]  T. Bubán,et al.  Floral traits affecting fire blight infection and management , 2012, Trees.

[24]  D. Treutter Pome fruit health , 2012, Trees.

[25]  J. Riffell The neuroecology of a pollinator's buffet: olfactory preferences and learning in insect pollinators. , 2011, Integrative and comparative biology.

[26]  N. Blüthgen,et al.  Composition of epiphytic bacterial communities differs on petals and leaves. , 2011, Plant biology.

[27]  L. Kang,et al.  Roles of (Z)-3-hexenol in plant-insect interactions , 2011, Plant signaling & behavior.

[28]  G. Smagghe,et al.  Entomovectoring in plant protection , 2011, Arthropod-Plant Interactions.

[29]  Roger E Bumgarner,et al.  The genome of the domesticated apple (Malus × domestica Borkh.) , 2010, Nature Genetics.

[30]  G. Arimura,et al.  Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. , 2009, Plant & cell physiology.

[31]  S. Dötterl,et al.  Disease Status and Population Origin Effects on Floral Scent: Potential Consequences for Oviposition and Fruit Predation in A Complex Interaction Between A Plant, Fungus, and Noctuid Moth , 2009, Journal of Chemical Ecology.

[32]  B. Maccagnani,et al.  Apis mellifera and Osmia cornuta as carriers for the secondary spread of Bacillus subtilis on apple flowers , 2009, BioControl.

[33]  J. Ton,et al.  Long-distance signalling in plant defence. , 2008, Trends in plant science.

[34]  Mitchell G. A. Thomson,et al.  Generalization Mediates Sensitivity to Complex Odor Features in the Honeybee , 2008, PloS one.

[35]  M. Sisterson Effects of Insect-Vector Preference for Healthy or Infected Plants on Pathogen Spread: Insights from a Model , 2008, Journal of economic entomology.

[36]  C. Pieterse,et al.  Plant interactions with microbes and insects: from molecular mechanisms to ecology. , 2007, Trends in plant science.

[37]  J. Tautz,et al.  Do honeybees detect colour targets using serial or parallel visual search? , 2006, Journal of Experimental Biology.

[38]  Jörg-Peter Schnitzler,et al.  Practical approaches to plant volatile analysis. , 2006, The Plant journal : for cell and molecular biology.

[39]  J. Cabrefiga,et al.  Analysis of Aggressiveness of Erwinia amylovora Using Disease-Dose and Time Relationships. , 2005, Phytopathology.

[40]  K. Geider,et al.  Influence of Stigmatic Morphology on Flower Colonization by Erwinia amylovora and Pantoea agglomerans , 2005, European Journal of Plant Pathology.

[41]  M. Farag,et al.  (Z)-3-Hexenol induces defense genes and downstream metabolites in maize , 2005, Planta.

[42]  K. Geider,et al.  Real‐time PCR for detection and quantification of Erwinia amylovora, the causal agent of fireblight , 2004 .

[43]  B. Smith,et al.  Variation in complex olfactory stimuli and its influence on odour recognition , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[44]  Z. Orosz-Kovács,et al.  The nectary as the primary site of infection by Erwinia amylovora (Burr.) Winslow et al.: a mini review , 2003, Plant Systematics and Evolution.

[45]  A. Sabatini,et al.  ERWINIA AMYLOVORA LONGEVITY IN BEEHIVES, BEEHIVE PRODUCTS AND HONEYBEES , 2002 .

[46]  J. Yu,et al.  P10c: a new biological control agent for control of fire blight which can be sprayed or distributed using honey bees , 2002 .

[47]  A. Naef,et al.  Insect-mediated reproduction of systemic infections by Puccinia arrhenatheri on Berberis vulgaris. , 2002, The New phytologist.

[48]  P. L. Pusey The Role of Water in Epiphytic Colonization and Infection of Pomaceous Flowers by Erwinia amylovora. , 2000, Phytopathology.

[49]  D. Laloi,et al.  Recognition of Complex Odors by Restrained and Free-Flying Honeybees, Apis mellifera , 2000, Journal of Chemical Ecology.

[50]  R. Raguso,et al.  ‘Floral’ scent production by Puccinia rust fungi that mimic flowers , 1998, Molecular ecology.

[51]  F. Marion-Poll,et al.  Identification of Floral Volatiles Involved in Recognition of Oilseed Rape Flowers, Brassica napus by Honeybees, Apis mellifera , 1997, Journal of Chemical Ecology.

[52]  Ilya Raskin,et al.  Airborne signalling by methyl salicylate in plant pathogen resistance , 1997, Nature.

[53]  D. Bassi,et al.  Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography. , 1997, Journal of chromatography. A.

[54]  S. Lindow,et al.  Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms , 1993 .

[55]  Julie A. Henning,et al.  Honey - bee (Hymenoptera, Apidae) behavioral - response to primary alfalfa (Rosales, Fabaceae) flora , 1992 .

[56]  M. Pham-Delègue,et al.  Sunflower aroma detection by the honeybee , 1990, Journal of Chemical Ecology.

[57]  K. Furukawa,et al.  Volatile components of apple flowers , 1990 .

[58]  D. Sigee,et al.  Erwinia amylovora infection of hawthorn blossom. I: The anther , 1989 .

[59]  S. Cristescu,et al.  Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora. , 2018, Molecular plant pathology.

[60]  G. Flamini,et al.  Flowers volatile profile of a rare red apple tree from Marche region (Italy). , 2014, Journal of oleo science.

[61]  M. Lehrer,et al.  Cognitive Ecology of Pollination: Honeybee vision and floral displays:from detection to close-up recognition , 2001 .

[62]  J. Vanneste Fire Blight: The Disease and its Causative Agent, Erwinia amylovora , 2000 .

[63]  J. Vanneste,et al.  Biological control of fire blight. , 2000 .

[64]  P. L. Pusey Effect of nectar on microbial antagonists evaluated for use in control of fire blight of pome fruits. , 1999, Phytopathology.

[65]  J. Vanneste Honey bees and epiphytic bacteria to control fire blight, a bacterial disease of apple and pear , 1996 .

[66]  D. M. Burgett,et al.  Dispersal of Erwinia amylovora and Pseudomonas fluorescens by honey bees from hives to apple and pear blossoms , 1993 .

[67]  G. Buchbauer,et al.  Headspace and essential oil analysis of apple flowers , 1993 .

[68]  S. Thomson The role of the stigma in fire blight infections. , 1986 .

[69]  M. Schroth,et al.  Monitoring the epiphytic population of Erwinia amylovora on pear with a selective medium. , 1972 .

[70]  H. Vandendool,et al.  A GENERALIZATION OF THE RETENTION INDEX SYSTEM INCLUDING LINEAR TEMPERATURE PROGRAMMED GAS-LIQUID PARTITION CHROMATOGRAPHY. , 1963, Journal of chromatography.