In silico methods for linking genes and secondary metabolites: The way forward

In silico methods for linking genomic space to chemical space have played a crucial role in genomics driven discovery of new natural products as well as biosynthesis of altered natural products by engineering of biosynthetic pathways. Here we give an overview of available computational tools and then briefly describe a novel computational framework, namely retro-biosynthetic enumeration of biosynthetic reactions, which can add to the repertoire of computational tools available for connecting natural products to their biosynthetic gene clusters. Most of the currently available bioinformatics tools for analysis of secondary metabolite biosynthetic gene clusters utilize the “Genes to Metabolites” approach. In contrast to the “Genes to Metabolites” approach, the “Metabolites to Genes” or retro-biosynthetic approach would involve enumerating the various biochemical transformations or enzymatic reactions which would generate the given chemical moiety starting from a set of precursor molecules and identifying enzymatic domains which can potentially catalyze the enumerated biochemical transformations. In this article, we first give a brief overview of the presently available in silico tools and approaches for analysis of secondary metabolite biosynthetic pathways. We also discuss our preliminary work on development of algorithms for retro-biosynthetic enumeration of biochemical transformations to formulate a novel computational method for identifying genes associated with biosynthesis of a given polyketide or nonribosomal peptide.

[1]  Michael A Fischbach,et al.  Natural products version 2.0: connecting genes to molecules. , 2010, Journal of the American Chemical Society.

[2]  Kent McClymont,et al.  Metabolic tinker: an online tool for guiding the design of synthetic metabolic pathways , 2013, Nucleic acids research.

[3]  Hsien-Da Huang,et al.  FMM: a web server for metabolic pathway reconstruction and comparative analysis , 2009, Nucleic Acids Res..

[4]  Christopher N. Boddy,et al.  Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides , 2014, Journal of Industrial Microbiology & Biotechnology.

[5]  Michael A Fischbach,et al.  Computational approaches to natural product discovery. , 2015, Nature chemical biology.

[6]  Huimin Zhao,et al.  Engineering microbial factories for synthesis of value-added products , 2011, Journal of Industrial Microbiology & Biotechnology.

[7]  Gitanjali Yadav,et al.  NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases , 2004, Nucleic Acids Res..

[8]  Minoru Kanehisa,et al.  Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes. , 2007, Journal of molecular biology.

[9]  M. Marahiel,et al.  Biosynthesis of natural products on modular peptide synthetases. , 2001, Metabolic engineering.

[10]  Kai Blin,et al.  NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity , 2011, Nucleic Acids Res..

[11]  C. Hertweck,et al.  The biosynthetic logic of polyketide diversity. , 2009, Angewandte Chemie.

[12]  Roger G. Linington,et al.  Insights into Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene Clusters , 2014, Cell.

[13]  R. Kolter,et al.  Natural products in soil microbe interactions and evolution. , 2015, Natural product reports.

[14]  S. Brady,et al.  Mining the metabiome: identifying novel natural products from microbial communities. , 2014, Chemistry & biology.

[15]  Gitanjali Yadav,et al.  SBSPKS: structure based sequence analysis of polyketide synthases , 2010, Nucleic Acids Res..

[16]  Stefan Kramer,et al.  Data-driven extraction of relative reasoning rules to limit combinatorial explosion in biodegradation pathway prediction , 2008, Bioinform..

[17]  Kiejung Park,et al.  ASMPKS: an analysis system for modular polyketide synthases , 2007, BMC Bioinformatics.

[18]  Gitanjali Yadav,et al.  Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. , 2003, Journal of molecular biology.

[19]  A. Hill The biosynthesis, molecular genetics and enzymology of the polyketide-derived metabolites. , 2006, Natural product reports.

[20]  E. Corey,et al.  The Logic of Chemical Synthesis , 1989 .

[21]  Kyle R. Conway,et al.  ClusterMine360: a database of microbial PKS/NRPS biosynthesis , 2012, Nucleic Acids Res..

[22]  E. Thines,et al.  Sfp-Type 4′-Phosphopantetheinyl Transferase Is Indispensable for Fungal Pathogenicity[W] , 2009, The Plant Cell Online.

[23]  Rainer Breitling,et al.  Pep2Path: Automated Mass Spectrometry-Guided Genome Mining of Peptidic Natural Products , 2014, PLoS Comput. Biol..

[24]  Kevin V Solomon,et al.  Synthetic metabolism: engineering biology at the protein and pathway scales. , 2009, Chemistry & biology.

[25]  Gitanjali Yadav,et al.  Towards Prediction of Metabolic Products of Polyketide Synthases: An In Silico Analysis , 2009, PLoS Comput. Biol..

[26]  Lynda B. M. Ellis,et al.  The University of Minnesota Pathway Prediction System: multi-level prediction and visualization , 2011, Nucleic Acids Res..

[27]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[28]  S. Brady,et al.  eSNaPD: a versatile, web-based bioinformatics platform for surveying and mining natural product biosynthetic diversity from metagenomes. , 2014, Chemistry & biology.

[29]  K. Prather,et al.  De novo biosynthetic pathways: rational design of microbial chemical factories. , 2008, Current opinion in biotechnology.

[30]  E. Li-Chan,et al.  Marine actinobacteria: an important source of bioactive natural products. , 2014, Environmental toxicology and pharmacology.

[31]  Tilmann Weber,et al.  In silico tools for the analysis of antibiotic biosynthetic pathways. , 2014, International journal of medical microbiology : IJMM.

[32]  Susumu Goto,et al.  PathPred: an enzyme-catalyzed metabolic pathway prediction server , 2010, Nucleic Acids Res..

[33]  J. Piel,et al.  Analysis of the Sorangicin Gene Cluster Reinforces the Utility of a Combined Phylogenetic/Retrobiosynthetic Analysis for Deciphering Natural Product Assembly by trans‐AT PKS , 2010, Chembiochem : a European journal of chemical biology.

[34]  Minoru Kanehisa,et al.  The KEGG database. , 2002, Novartis Foundation symposium.

[35]  Keng C. Soh,et al.  DREAMS of metabolism. , 2010, Trends in biotechnology.

[36]  J. Badger,et al.  The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic Tool to Classify Secondary Metabolite Gene Diversity , 2012, PloS one.

[37]  M. Marahiel,et al.  Nonribosomal peptides: from genes to products. , 2003, Natural product reports.

[38]  Michael A. Skinnider,et al.  Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM) , 2015, Nucleic acids research.

[39]  J. Meier,et al.  Chapter 9. Synthetic probes for polyketide and nonribosomal peptide biosynthetic enzymes. , 2009, Methods in enzymology.

[40]  Valérie Leclère,et al.  Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing , 2015, Nucleic Acids Res..

[41]  D. Mitchell,et al.  Lessons learned from the transformation of natural product discovery to a genome-driven endeavor , 2014, Journal of Industrial Microbiology & Biotechnology.

[42]  Masaaki Kotera,et al.  RPAIR : a reactant-pair database representing chemical changes in enzymatic reactions , 2004 .

[43]  Wei Zhang,et al.  Diversity-oriented combinatorial biosynthesis of benzenediol lactone scaffolds by subunit shuffling of fungal polyketide synthases , 2014, Proceedings of the National Academy of Sciences.

[44]  Peter Man-Un Ung,et al.  Automated genome mining for natural products , 2009, BMC Bioinformatics.

[45]  Gwan-Su Yi,et al.  PKMiner: a database for exploring type II polyketide synthases , 2012, BMC Microbiology.

[46]  Kai Blin,et al.  antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters , 2015, Nucleic Acids Res..

[47]  Victor M. Markowitz,et al.  IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites , 2015, mBio.

[48]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[49]  Kai Blin,et al.  antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences , 2011, Nucleic Acids Res..

[50]  S. Brady,et al.  Metagenomic small molecule discovery methods. , 2014, Current opinion in microbiology.

[51]  F. O'Gara,et al.  The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms , 2015, Marine drugs.

[52]  D. Haft,et al.  SMURF: Genomic mapping of fungal secondary metabolite clusters. , 2010, Fungal genetics and biology : FG & B.

[53]  J. Piel,et al.  Recent advances in genome-based polyketide discovery. , 2014, Current opinion in biotechnology.

[54]  Kira J. Weissman,et al.  Combinatorial biosynthesis of reduced polyketides , 2005, Nature Reviews Microbiology.

[55]  T. Huynh-Dinh,et al.  The logic of chemical synthesis , 1996 .

[56]  Ralph A. Cacho,et al.  Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi , 2015, Front. Microbiol..

[57]  Minoru Kanehisa,et al.  KEGG Bioinformatics Resource for Plant Genomics and Metabolomics. , 2016, Methods in molecular biology.

[58]  Anil Kumar Singh,et al.  Retrobiosynthetic Approach Delineates the Biosynthetic Pathway and the Structure of the Acyl Chain of Mycobacterial Glycopeptidolipids* , 2012, The Journal of Biological Chemistry.

[59]  J. Zucko,et al.  ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures , 2008, Nucleic acids research.

[60]  B. Shen,et al.  Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Carla S. Jones,et al.  Minimum Information about a Biosynthetic Gene cluster. , 2015, Nature chemical biology.

[62]  B. Bachmann Biosynthesis: is it time to go retro? , 2010, Nature chemical biology.

[63]  S. Zinjarde,et al.  Nocardiopsis species: a potential source of bioactive compounds , 2016, Journal of applied microbiology.

[64]  Shu-Lin Chang,et al.  Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. , 2011, Current opinion in chemical biology.

[65]  J. Mckenney Lovastatin: a new cholesterol-lowering agent. , 1988, Clinical pharmacy.

[66]  O. Genilloud The re-emerging role of microbial natural products in antibiotic discovery , 2014, Antonie van Leeuwenhoek.

[67]  Jacques Ravel,et al.  Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. , 2009, Methods in enzymology.

[68]  C. Walsh,et al.  The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. , 1999, Chemistry & biology.