Optimal Quantum Control by an Adapted Coordinate Ascent Algorithm

This paper explores an adaption of the coordinate ascent approach to quantum control problems. It was motivated by the observation that several of the existing monotone-converging schemes for quantum control may be viewed as approximations of the well-known coordinate ascent method. Our implementation employs line searches in coordinate directions in control space using only evaluations of the performance functional, without invoking its derivatives. It is based on recasting the performance functional as a local tracking function which gives the „future” quality of a control at each moment in time. Back propagation of a basis of the target space enables these performance functional (i.e., tracking function) evaluations to be done efficiently. The performance functional may include, or not include, regularization terms as needed. Convergence of the resulting algorithm and its relation to previous schemes are discussed, and numerical examples are provided. In our tests, the coordinate ascent algorithm exhib...

[1]  Julien Salomon,et al.  Convergence of the time-discretized monotonic schemes , 2007 .

[2]  Constantin Brif,et al.  Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles , 2007, quant-ph/0702147.

[3]  Regina de Vivie-Riedle,et al.  Monotonic convergent optimal control theory with strict limitations on the spectrum of optimized laser fields. , 2008, Physical review letters.

[4]  A. Weiner Femtosecond pulse shaping using spatial light modulators , 2000 .

[5]  V. Krotov,et al.  Global methods in optimal control theory , 1993 .

[6]  Yvon Maday,et al.  Monotonic Parareal Control for Quantum Systems , 2007, SIAM J. Numer. Anal..

[7]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[8]  Herschel Rabitz,et al.  A RAPID MONOTONICALLY CONVERGENT ITERATION ALGORITHM FOR QUANTUM OPTIMAL CONTROL OVER THE EXPECTATION VALUE OF A POSITIVE DEFINITE OPERATOR , 1998 .

[9]  Antonella Zanna,et al.  Quantum Control With Piecewise Constant Control Functions , 2009, SIAM J. Sci. Comput..

[10]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[11]  A. Macovski,et al.  Optimal Control Solutions to the Magnetic Resonance Selective Excitation Problem , 1986, IEEE Transactions on Medical Imaging.

[12]  A. Borzì,et al.  Computational techniques for a quantum control problem with H1-cost , 2008 .

[13]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[14]  Stefan Volkwein,et al.  A Globalized Newton Method for the Accurate Solution of a Dipole Quantum Control Problem , 2009, SIAM J. Sci. Comput..

[15]  Navin Khaneja,et al.  Optimal Control Methods in NMR Spectroscopy , 2010 .

[16]  Stefan Volkwein,et al.  Formulation and numerical solution of finite-level quantum optimal control problems , 2008 .

[17]  J. Werschnik,et al.  Quantum optimal control theory , 2007, 0707.1883.

[18]  A. Lindinger,et al.  Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules , 2007 .

[19]  R. Wilcox Exponential Operators and Parameter Differentiation in Quantum Physics , 1967 .

[20]  Julien Salomon,et al.  Constructive solution of a bilinear optimal control problem for a Schrödinger equation , 2008, Syst. Control. Lett..

[21]  Kazufumi Ito,et al.  Optimal Bilinear Control of an Abstract Schrödinger Equation , 2007, SIAM J. Control. Optim..

[22]  Yvon Maday,et al.  Monotonic time-discretized schemes in quantum control , 2006, Numerische Mathematik.

[23]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[24]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[25]  Yvon Maday,et al.  New formulations of monotonically convergent quantum control algorithms , 2003 .

[26]  D. Sugny,et al.  Monotonically convergent optimal control theory of quantum systems with spectral constraints on the control field , 2009, 0906.1051.

[27]  R. Kosloff,et al.  A fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics , 1983 .

[28]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[29]  Alfio Borzì,et al.  QUCON: A fast Krylov-Newton code for dipole quantum control problems , 2010, Comput. Phys. Commun..

[30]  Alex Brown,et al.  Generalized filtering of laser fields in optimal control theory: application to symmetry filtering of quantum gate operations , 2009 .

[31]  Samuel H. Tersigni,et al.  Wavepacket dancing: Achieving chemical selectivity by shaping light pulses , 1989 .

[32]  Burkhard Luy,et al.  Exploring the limits of broadband excitation and inversion pulses. , 2004, Journal of magnetic resonance.

[33]  H. Rabitz Shaped Laser Pulses as Reagents , 2003, Science.

[34]  Julien Salomon,et al.  On the relationship between the local tracking procedures and monotonic schemes in quantum optimal control. , 2006, The Journal of chemical physics.

[35]  Timo O. Reiss,et al.  Application of optimal control theory to the design of broadband excitation pulses for high-resolution NMR. , 2003, Journal of magnetic resonance.

[36]  Herschel Rabitz,et al.  Optimal control of curve‐crossing systems , 1992 .

[37]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .