Design rules for customizable optical materials based on nanocomposites

Nanocomposites with tailored optical properties can provide a new degree of freedom for optical design. However, despite their potential these materials remain unused in bulk applications. Here we investigate the conditions under which they can be used for optical applications using Mie theory, effective medium theories, and numerical simulations based on the finite element method. We show that due to scattering different effective medium regimes have to be distinguished, and that bulk materials can only be realized in a specific parameter range. Our analysis also enables us to quantify the range of validity of different effective medium theories, and identify design rules on how the free material parameters should be adjusted for specific applications.

[1]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[2]  Andreas Tünnermann,et al.  Multipole approach to metamaterials , 2008 .

[3]  Yu-Ming Lin,et al.  Transparent high refractive index nanocomposite thin films , 2007 .

[4]  Bai Yang,et al.  High refractive index organic–inorganic nanocomposites: design, synthesis and application , 2009 .

[5]  Richard W. Siegel,et al.  TiO2 nanocomposites with high refractive index and transparency , 2011 .

[6]  Norman Herron,et al.  Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties , 1991 .

[7]  T. Weber,et al.  The Ewald-Oseen extinction theorem and extinction lengths , 1999 .

[8]  Charles-Antoine Guérin,et al.  Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy , 2005 .

[9]  C. Bohren Applicability of Effective-Medium Theories to problems of Scattering and Absorption by Nonhomogeneous Atmospheric Particles , 1986 .

[10]  M. Rong,et al.  Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: A review , 2006 .

[11]  Heidi Fearn,et al.  Microscopic approach to reflection, transmission, and the Ewald–Oseen extinction theorem , 1996 .

[12]  Masaya Notomi,et al.  Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap , 2000 .

[13]  Vollmer,et al.  Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. , 1993, Physical review. B, Condensed matter.

[14]  G. Russakoff,et al.  A Derivation of the Macroscopic Maxwell Equations , 1970 .

[15]  Peter Hartmann,et al.  Optical glass and glass ceramic historical aspects and recent developments: a Schott view , 2010 .

[16]  R. Ruppin,et al.  Evaluation of extended Maxwell-Garnett theories , 2000 .

[17]  Walter Caseri,et al.  Polymer‐TiO2 Nanocomposites: A Route Towards Visually Transparent Broadband UV Filters and High Refractive Index Materials , 2003 .

[18]  Harald Giessen,et al.  Two-photon direct laser writing of ultracompact multi-lens objectives , 2016, Nature Photonics.

[19]  Carsten Rockstuhl,et al.  Transition from thin-film to bulk properties of metamaterials , 2008 .

[20]  J. Valentine,et al.  Realization of an all-dielectric zero-index optical metamaterial , 2013, Nature Photonics.

[21]  Yan Tang,et al.  Tunability of the refractive index of gold nanoparticle dispersions. , 2007, Nano letters.

[22]  C. Holloway,et al.  A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix , 2003 .

[23]  Vadim A. Markel Introduction to the Maxwell Garnett approximation: tutorial. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  Y. Kivshar,et al.  Phase diagram for the transition from photonic crystals to dielectric metamaterials , 2015, Nature Communications.

[25]  M. Hentschel,et al.  Hybrid Organic-Plasmonic Nanoantennas with Enhanced Third-Harmonic Generation , 2017, ACS omega.

[26]  T. Zeng,et al.  First-Principles Study and Model of Dielectric Functions of Silver Nanoparticles , 2010 .

[27]  Isabelle Staude,et al.  Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics , 2016 .

[28]  Jingang Liu,et al.  High refractive index polymers: fundamental research and practical applications , 2009 .

[29]  S. Linden,et al.  Photonic metamaterials by direct laser writing and silver chemical vapour deposition. , 2008, Nature materials.

[30]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[31]  R. Piestun,et al.  Dynamic properties of photonic crystals and their effective refractive index , 2005 .

[32]  Doyle,et al.  Optical properties of a suspension of metal spheres. , 1989, Physical review. B, Condensed matter.

[33]  Andrey E. Miroshnichenko,et al.  Magnetic light , 2012, Scientific reports.

[34]  David E. Aspnes,et al.  Local‐field effects and effective‐medium theory: A microscopic perspective , 1982 .