Uniform Edge Distribution in Hypergraphs is Hereditary

Let $\alpha \in (0,1), l \ge 2$ and let ${\cal H}_n$ be an $l$-graph on $n$ vertices. ${\cal H}_n$ is $(\alpha, \xi)$-uniform if every $\xi n$ vertices of ${\cal H}_n$ span $(\alpha \pm\xi) {\xi n\choose l}$ edges. Our main result is the following. For all $\widetilde{\delta}$, there exist $\delta, r, n_0$ such that, if $n>n_0$ and ${\cal H}_n^{(l)}$ is $(\alpha, \delta)$-uniform, then all but $\exp\{-r^{1/l}/20\}{n\choose r}$ $r$-sets of vertices induce a subhypergraph that is $(\alpha,\widetilde{\delta})$-uniform. We also present the following application. Let ${\cal F}$ be a fixed $l$-graph, and $c>0$. Then there is an $n_0$ and $r'$ such that: If ${\cal H}$ is an $n$ vertex $l$-graph ($n>n_0$) such that the deletion of any $c n^l$ edges of ${\cal H}$ leaves an $l$-graph that admits no homomorphism into ${\cal F}$, then there exists ${\cal H}' \subset {\cal H}$ on $r'$ vertices, that also admits no homomorphism into ${\cal F}$. This extends a recent result of Alon and Shapira, who proved it when ${\cal F}$ is a complete graph.

[1]  P. Erdös On the structure of linear graphs , 1946 .

[2]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[3]  B. Bollobás,et al.  Extremal Graphs without Large Forbidden Subgraphs , 1978 .

[4]  Paul Erdös,et al.  On Ramsey—Turán type theorems for hypergraphs , 1982, Comb..

[5]  M. Simonovits Extremal graph problems and graph products , 1983 .

[6]  Zoltán Füredi,et al.  A new generalization of the Erdős-Ko-Rado theorem , 1983, Comb..

[7]  V. Rödl,et al.  On graphs with small subgraphs of large chromatic number , 1985, Graphs Comb..

[8]  László Pyber,et al.  A new generalization of the Erdös-Ko-Rado theorem , 1986, J. Comb. Theory A.

[9]  Vojtech Rödl,et al.  Some Ramsey-Turán type results for hypergraphs , 1988, Comb..

[10]  A. F. Sidorenko,et al.  On ramsey-tuŕan numbers for 3-graphs , 1992, J. Graph Theory.

[11]  Vojtech Rödl,et al.  The algorithmic aspects of the regularity lemma , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[12]  Vojtech Rödl,et al.  A Fast Approximation Algorithm for Computing the Frequencies of Subgraphs in a Given Graph , 1995, SIAM J. Comput..

[13]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[14]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1998, JACM.

[15]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[16]  Miklós Simonovits,et al.  Ramsey-Turán theory , 2001, Discret. Math..

[17]  Noga Alon,et al.  Random sampling and approximation of MAX-CSP problems , 2002, STOC '02.

[18]  Noga Alon,et al.  Testing k-colorability , 2002, SIAM J. Discret. Math..

[19]  Noga Alon,et al.  Testing satisfiability , 2002, SODA '02.

[20]  P. Frankl EXTREMAL PROBLEMS ON SET SYSTEMSPETER FRANKL AND VOJT , 2002 .

[21]  V. Rödl,et al.  Extremal problems on set systems , 2002 .

[22]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.