The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules

Abstract A detailed study into the rheology and microstructure of dense suspensions of initially spherical capsules is presented, where capsules are composed of a fluid-filled interior surrounded by an elastic membrane. This study couples a lattice-Boltzmann fluid solver to a finite-element membrane model creating a robust and scalable method for the simulation of these suspensions. A Lees–Edwards boundary condition is used to simulate periodic simple shear to obtain bulk rheological properties, and three-dimensional results are presented for capsules in the regime of negligible inertia, Brownian motion and colloidal interparticle forces. The simulation results focus on describing the suspension rheology as a function of the particle concentration and deformability, and relating these macroscopic rheological findings to changes at the particle level, i.e. the suspension microstructure. Several important findings are made: suspensions of deformable capsules are found to be shear thinning, and the initially compressive normal stresses associated with rigid spherical suspensions undergo rapid changes with moderate levels of particle deformation. These normal stress changes are particularly evident in the first normal stress difference, which undergoes a sign change at fairly minor levels of deformation, and the particle pressure, which decreases rapidly with increasing particle deformability. Changes in the microstructure as quantified by the single-body microstructure and the pair distribution function are reported. Also, results calculating particle self-diffusion are presented and related to changes in the normal stresses.

[1]  J. Clausen,et al.  Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspensions , 2009 .

[2]  Dominique Barthès-Biesel,et al.  Motion of a spherical microcapsule freely suspended in a linear shear flow , 1980, Journal of Fluid Mechanics.

[3]  Cyrus K. Aidun,et al.  Parallel performance of a lattice-Boltzmann/finite element cellular blood flow solver on the IBM Blue Gene/P architecture , 2010, Comput. Phys. Commun..

[4]  Jeffrey F. Morris,et al.  Curvilinear flows of noncolloidal suspensions: The role of normal stresses , 1999 .

[5]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[6]  John F. Brady,et al.  STOKESIAN DYNAMICS , 2006 .

[7]  E. J. Hinch,et al.  The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles , 1972, Journal of Fluid Mechanics.

[8]  R. Roscoe,et al.  On the rheology of a suspension of viscoelastic spheres in a viscous liquid , 1967, Journal of Fluid Mechanics.

[9]  Chaouqi Misbah,et al.  Rheology of a dilute suspension of vesicles. , 2007, Physical review letters.

[10]  P. Nott,et al.  Experimental measurements of the normal stresses in sheared Stokesian suspensions , 2003, Journal of Fluid Mechanics.

[11]  Geoffrey Ingram Taylor,et al.  The Viscosity of a Fluid Containing Small Drops of Another Fluid , 1932 .

[12]  John F. Brady,et al.  Accelerated Stokesian Dynamics simulations , 2001, Journal of Fluid Mechanics.

[13]  Alfonso Caiazzo,et al.  Corrected momentum exchange method for lattice Boltzmann simulations of suspension flow. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Asimina Sierou,et al.  Shear-induced self-diffusion in non-colloidal suspensions , 2004, Journal of Fluid Mechanics.

[15]  Tharwat F. Tadros,et al.  Rheology of Concentrated Suspensions , 1990 .

[16]  P. Vlahovska,et al.  Dynamics of a viscous vesicle in linear flows. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  U. Seifert,et al.  Influence of shear flow on vesicles near a wall: A numerical study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[19]  J. Clausen,et al.  Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method , 2009, Journal of Fluid Mechanics.

[20]  W. R. Schowalter,et al.  Simple shear flow round a rigid sphere: inertial effects and suspension rheology , 1970, Journal of Fluid Mechanics.

[21]  J. Goddard,et al.  Nonlinear effects in the rheology of dilute suspensions , 1967, Journal of Fluid Mechanics.

[22]  A. Einstein Zur Theorie der Brownschen Bewegung , 1906 .

[23]  D. A. Saville,et al.  Colloidal Dispersions: ACKNOWLEDGEMENTS , 1989 .

[24]  T. Biben,et al.  Tumbling of vesicles under shear flow within an advected-field approach. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[26]  Cyrus K. Aidun,et al.  Lattice Boltzmann simulation of solid particles suspended in fluid , 1995 .

[27]  Eugene C. Eckstein,et al.  Self-diffusion of particles in shear flow of a suspension , 1977, Journal of Fluid Mechanics.

[28]  David T. Leighton,et al.  The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids , 2000 .

[29]  R.J.J. Jongschaap,et al.  Shear-induced diffusion and rheology of noncolloidal suspensions: Time scales and particle displacements , 2001 .

[30]  Albert Einstein,et al.  Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der Moleküldimensionen”︁ [AdP 34, 591 (1911)] , 2005, Annalen der Physik.

[31]  C. Aidun,et al.  Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation , 1998, Journal of Fluid Mechanics.

[32]  John F. Brady,et al.  Self-diffusion in sheared suspensions by dynamic simulation , 1999, Journal of Fluid Mechanics.

[33]  P. Bagchi,et al.  Rheology of a dilute suspension of liquid-filled elastic capsules. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  G. Batchelor,et al.  The stress system in a suspension of force-free particles , 1970, Journal of Fluid Mechanics.

[35]  J. Brady,et al.  Stokesian Dynamics simulation of Brownian suspensions , 1996, Journal of Fluid Mechanics.

[36]  Alexander Z. Zinchenko,et al.  Shear flow of highly concentrated emulsions of deformable drops by numerical simulations , 2002, Journal of Fluid Mechanics.

[37]  Dominique Barthès-Biesel,et al.  Capsule motion in flow: Deformation and membrane buckling , 2009 .

[38]  Thierry Biben,et al.  Rheology of a dilute two-dimensional suspension of vesicles , 2010, Journal of Fluid Mechanics.

[39]  A. Acrivos,et al.  Shear-induced particle diffusivities from numerical simulations , 2000, Journal of Fluid Mechanics.

[40]  P. Adler,et al.  Boundary flow condition analysis for the three-dimensional lattice Boltzmann model , 1994 .

[41]  S. G. Mason,et al.  Particle motions in sheared suspensions: XXIII. Wall migration of fluid drops☆ , 1967 .

[42]  Tim Reis,et al.  The lattice Boltzmann method for complex flows , 2007 .

[43]  Pierre Lallemand,et al.  Lattice Gas Hydrodynamics in Two and Three Dimensions , 1987, Complex Syst..

[44]  M. Dupin,et al.  Modeling the flow of dense suspensions of deformable particles in three dimensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  A. Ladd,et al.  Lattice-Boltzmann Simulations of Particle-Fluid Suspensions , 2001 .

[46]  H. Eilers Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration , 1941 .

[47]  J. Stickel,et al.  FLUID MECHANICS AND RHEOLOGY OF DENSE SUSPENSIONS , 2001 .

[48]  John F. Brady,et al.  Rheology and microstructure in concentrated noncolloidal suspensions , 2002 .

[49]  Francis Gadala-Maria,et al.  Fore‐and‐Aft Asymmetry in a Concentrated Suspension of Solid Spheres , 1987 .

[50]  Gwennou Coupier,et al.  Noninertial lateral migration of vesicles in bounded Poiseuille flow , 2008, 0803.3153.

[51]  G. Batchelor,et al.  The determination of the bulk stress in a suspension of spherical particles to order c2 , 1972, Journal of Fluid Mechanics.

[52]  Prosenjit Bagchi,et al.  Mesoscale simulation of blood flow in small vessels. , 2007, Biophysical journal.

[53]  John F. Brady,et al.  Microstructure of strongly sheared suspensions and its impact on rheology and diffusion , 1997, Journal of Fluid Mechanics.

[54]  Theo G. Theofanous,et al.  The lattice Boltzmann equation method: theoretical interpretation, numerics and implications , 2003 .

[55]  Robert MacMeccan,et al.  Mechanistic Effects of Erythrocytes on Platelet Deposition in Coronary Thrombosis , 2007 .

[56]  C. Zukoski,et al.  Rheological consequences of microstructural transitions in colloidal crystals , 1994 .

[57]  A. Acrivos,et al.  The shear-induced migration of particles in concentrated suspensions , 1987, Journal of Fluid Mechanics.

[58]  Wen-An Yong,et al.  Rigorous Navier–Stokes limit of the lattice Boltzmann equation , 2003 .

[59]  Aleksander S Popel,et al.  An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows , 2007, Physical biology.

[60]  John F. Brady,et al.  Brownian motion, hydrodynamics, and the osmotic pressure , 1993 .

[61]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[62]  J. Jiménez,et al.  Boltzmann Approach to Lattice Gas Simulations , 1989 .

[63]  Jeffrey F. Morris,et al.  Particle pressure in sheared Brownian suspensions , 2008 .

[64]  Linda Vahala,et al.  Entropic, LES and boundary conditions in lattice Boltzmann simulations of turbulence , 2009 .

[65]  W. Frith,et al.  The rheology of suspensions containing polymerically stabilized particles , 1989 .

[66]  D. J. O H Accelerated Stokesian Dynamics simulations , 2022 .

[67]  John Tsamopoulos,et al.  Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling , 2004, Journal of Fluid Mechanics.

[68]  W. Steubing,et al.  Zur Theorie der Brownschen Bewegung , 1908 .

[69]  C. Aidun,et al.  Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force , 2009 .

[70]  Cyrus K. Aidun,et al.  Capsule dynamics and rheology in shear flow: Particle pressure and normal stress , 2010 .

[71]  Cyrus K. Aidun,et al.  Extension of the Lattice-Boltzmann Method for Direct Simulation of Suspended Particles Near Contact , 2003 .

[72]  D. Ende,et al.  Measuring shear-induced self-diffusion in a counterrotating geometry. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[73]  L. G. Leal,et al.  Time-dependent shear flows of a suspension of particles with weak Brownian rotations , 1973, Journal of Fluid Mechanics.

[74]  Saroja Ramanujan,et al.  Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities , 1998, Journal of Fluid Mechanics.

[75]  Cyrus K. Aidun,et al.  Lattice-Boltzmann Method for Complex Flows , 2010 .

[76]  Andreas Acrivos,et al.  Shear-induced resuspension in a couette device , 1993 .

[77]  W. Zimmermann,et al.  Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  Bhavana Katyal,et al.  Microstructure from simulated Brownian suspension flows at large shear rate , 2002 .

[79]  Jeffrey F. Morris,et al.  Pressure-driven flow of a suspension: Buoyancy effects , 1998 .

[80]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[81]  David R. Noble,et al.  A consistent hydrodynamic boundary condition for the lattice Boltzmann method , 1995 .

[82]  J. Clausen The effect of particle deformation on the rheology and microstructure of noncolloidal suspensions , 2010 .

[83]  E. J. Hinch,et al.  Numerical simulation of a concentrated emulsion in shear flow , 1996, Journal of Fluid Mechanics.

[84]  D. Ende,et al.  Measurement of the full shear-induced self-diffusion tensor of noncolloidal suspensions , 2002 .

[85]  Chaouqi Misbah,et al.  Vacillating breathing and tumbling of vesicles under shear flow. , 2006, Physical review letters.

[86]  D. d'Humières,et al.  Multiple–relaxation–time lattice Boltzmann models in three dimensions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[87]  J. Brady,et al.  Pressure-driven flow of suspensions: simulation and theory , 1994, Journal of Fluid Mechanics.

[88]  Cyrus K. Aidun,et al.  Coupling the lattice‐Boltzmann and spectrin‐link methods for the direct numerical simulation of cellular blood flow , 2012 .

[89]  R. Skalak,et al.  Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow , 1994 .

[90]  David J. Jeffrey,et al.  The pressure moments for two rigid spheres in low-Reynolds-number flow , 1993 .

[91]  Ignacio Pagonabarraga,et al.  Lees–Edwards Boundary Conditions for Lattice Boltzmann , 2001 .

[92]  Dominique Barthès-Biesel,et al.  The time-dependent deformation of a capsule freely suspended in a linear shear flow , 1981, Journal of Fluid Mechanics.

[93]  R. Skalak,et al.  Motion of a tank-treading ellipsoidal particle in a shear flow , 1982, Journal of Fluid Mechanics.

[94]  Thomas J. Dougherty,et al.  A Mechanism for Non‐Newtonian Flow in Suspensions of Rigid Spheres , 1959 .

[95]  I. Krieger,et al.  Rheological studies on dispersions of uniform colloidal spheres , 1970 .

[96]  Cyrus K. Aidun,et al.  A method for direct simulation of flexible fiber suspensions using lattice Boltzmann equation with external boundary force , 2010 .

[97]  Jeffrey F. Morris,et al.  Particle pressure in a sheared suspension: a bridge from osmosis to granular dilatancy. , 2009, Physical review letters.

[98]  Pandurang M Kulkarni,et al.  Suspension properties at finite Reynolds number from simulated shear flow , 2008 .