Advances in optoplasmonic sensors – combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles

Abstract Nanophotonic device building blocks, such as optical nano/microcavities and plasmonic nanostructures, lie at the forefront of sensing and spectrometry of trace biological and chemical substances. A new class of nanophotonic architecture has emerged by combining optically resonant dielectric nano/microcavities with plasmonically resonant metal nanostructures to enable detection at the nanoscale with extraordinary sensitivity. Initial demonstrations include single-molecule detection and even single-ion sensing. The coupled photonic-plasmonic resonator system promises a leap forward in the nanoscale analysis of physical, chemical, and biological entities. These optoplasmonic sensor structures could be the centrepiece of miniaturised analytical laboratories, on a chip, with detection capabilities that are beyond the current state of the art. In this paper, we review this burgeoning field of optoplasmonic biosensors. We first focus on the state of the art in nanoplasmonic sensor structures, high quality factor optical microcavities, and photonic crystals separately before proceeding to an outline of the most recent advances in hybrid sensor systems. We discuss the physics of this modality in brief and each of its underlying parts, then the prospects as well as challenges when integrating dielectric nano/microcavities with metal nanostructures. In Section 5, we hint to possible future applications of optoplasmonic sensing platforms which offer many degrees of freedom towards biomedical diagnostics at the level of single molecules.

[1]  David G Lidzey,et al.  Plasmonic gold nanodiscs fabricated into a photonic-crystal nanocavity , 2016, Nanotechnology.

[2]  Shanhui Fan,et al.  Manipulating light with photonic crystals , 2001 .

[3]  J. Baumberg,et al.  Revealing Nanostructures through Plasmon Polarimetry. , 2017, ACS nano.

[4]  Frank Vollmer,et al.  Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution , 2016, Nature Photonics.

[5]  P. Barclay,et al.  High-Q/V Monolithic Diamond Microdisks Fabricated with Quasi-isotropic Etching. , 2015, Nano letters.

[6]  S. Arnold,et al.  Shift of whispering-gallery modes in microspheres by protein adsorption. , 2003, Optics letters.

[7]  Aleksei Aksimentiev,et al.  Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA , 2015, ACS nano.

[8]  Shota Kita,et al.  Photonic crystal nanolasers with nanoslot structure for sensing applications , 2011, NanoScience + Engineering.

[9]  Maksim Skorobogatiy,et al.  Photon crystal waveguide-based surface plasmon resonance biosensor , 2006 .

[10]  C. Murray,et al.  Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. , 2013, Nano letters.

[11]  Ya Cheng,et al.  Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining for second harmonic generation , 2015, CLEO 2015.

[12]  Paulina S. Kuo,et al.  Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity , 2014, Nature Communications.

[13]  Q. Quan,et al.  Photonic-plasmonic hybrid single-molecule nanosensor measures the effect of fluorescent labels on DNA-protein dynamics , 2017, Science Advances.

[14]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[15]  Melik C. Demirel,et al.  Nanoparticle-based protein detection by optical shift of a resonant microcavity , 2002, 1108.2337.

[16]  Martin Kristensen,et al.  Photonic-crystal waveguide biosensor. , 2007, Optics express.

[17]  Q. Quan,et al.  Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities. , 2011, Optics express.

[18]  Gennady Shvets,et al.  Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. , 2012, Nature materials.

[19]  Donghyun Kim,et al.  Detection of Single Nanoparticles Using the Dissipative Interaction in a High-Q Microcavity , 2016, 1604.02249.

[20]  Marco Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature Nanotechnology.

[21]  Wei C. Jiang,et al.  Cavity optomechanical spring sensing of single molecules , 2015, Nature Communications.

[22]  P. Fischer,et al.  Dispersion and shape engineered plasmonic nanosensors , 2016, Nature Communications.

[23]  Oren A Scherman,et al.  Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs. , 2012, Nano letters.

[24]  A. Trichet,et al.  Nanoparticle Trapping and Characterization Using Open Microcavities. , 2016, Nano letters.

[25]  T. Baba,et al.  Detection of endotoxin using a photonic crystal nanolaser , 2015, 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[26]  Benjamin L. Miller,et al.  Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing. , 2015, Lab on a chip.

[27]  L. Frandsen,et al.  Photonic crystal nanostructures for optical biosensing applications. , 2009, Biosensors & bioelectronics.

[28]  Frank Vollmer,et al.  Label-free optical detection of single enzyme-reactant reactions and associated conformational changes , 2017, Science Advances.

[29]  T. Kippenberg,et al.  A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. , 2011, Nature nanotechnology.

[30]  K. Vahala,et al.  High-Q surface-plasmon-polariton whispering-gallery microcavity , 2009, Nature.

[31]  Ray T. Chen,et al.  Cavity-Waveguide Coupling Engineered High Sensitivity Silicon Photonic Crystal Microcavity Biosensors With High Yield , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  Shota Kita,et al.  Selective detection of sub-atto-molar Streptavidin in 10(13)-fold impure sample using photonic crystal nanolaser sensors. , 2013, Optics express.

[33]  Erik H. Horak,et al.  Optical microresonators as single-particle absorption spectrometers , 2016, Nature Photonics.

[34]  A. Griol,et al.  DNA Detection Using a Photonic Crystal Waveguide Sensor , 2010 .

[35]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[36]  Alan X. Wang,et al.  Detecting explosive molecules from nanoliter solution: A new paradigm of SERS sensing on hydrophilic photonic crystal biosilica. , 2017, Biosensors & bioelectronics.

[37]  R. Holzwarth,et al.  Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators , 2013, Nature Communications.

[38]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[39]  K. Vahala,et al.  Cavity opto-mechanics , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[40]  Po-Tsung Lee,et al.  Photonic crystal nanofishbone nanocavity. , 2013, Optics letters.

[41]  Hiroshi Abe,et al.  Living-cell imaging using a photonic crystal nanolaser array. , 2015, Optics express.

[42]  Toshihiko Baba,et al.  Sensitive and selective detection of prostate-specific antigen using a photonic crystal nanolaser. , 2016, Optics express.

[43]  A. Mosk,et al.  Design of a three-dimensional photonic band gap cavity in a diamondlike inverse woodpile photonic crystal , 2014, 1405.2862.

[44]  M. Fiebig,et al.  Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites , 2015, Nature Communications.

[45]  Hatice Altug,et al.  Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. , 2012, ACS nano.

[46]  Yun-Feng Xiao,et al.  Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity , 2014 .

[47]  Lan Yang,et al.  On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator , 2010 .

[48]  Taiping Zhang,et al.  Plasmonic-photonic crystal coupled nanolaser , 2014, Nanotechnology.

[49]  T. Krauss,et al.  Chemical sensing in slotted photonic crystal heterostructure cavities , 2009 .

[50]  Pedro David Garcia,et al.  Cavity Quantum Electrodynamics with Anderson-Localized Modes , 2010, Science.

[51]  Muzammil Iqbal,et al.  Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[52]  C. Fotakis,et al.  3D plasmonic crystal metamaterials for ultra-sensitive biosensing , 2016, Scientific Reports.

[53]  Ya Cheng,et al.  Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining , 2015, Scientific Reports.

[54]  F. García-Vidal,et al.  Plasmonic Waveguide-Integrated Nanowire Laser , 2017, Nano letters.

[55]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[56]  Luis M Liz-Marzán,et al.  Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. , 2014, ACS nano.

[57]  J. Nam,et al.  Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells. , 2012, ACS nano.

[58]  Emmanuel Picard,et al.  Single-cell bacterium identification with a SOI optical microcavity , 2016 .

[59]  Yi-Chiau Huang,et al.  Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics. , 2014, Nano letters.

[60]  Lan Yang,et al.  Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities. , 2011, Optics express.

[61]  Hiroshi Abe,et al.  Array integration of thousands of photonic crystal nanolasers , 2014 .

[62]  Lan Yang,et al.  Ultrasensitive detection of mode splitting in active optical microcavities , 2010, 1007.0385.

[63]  A. Scherer,et al.  Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities. , 2014, ACS nano.

[64]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[65]  F. Vollmer,et al.  In Situ Observation of Single‐Molecule Surface Reactions from Low to High Affinities , 2016, Advanced materials.

[66]  Ray T. Chen,et al.  Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications , 2016, Frontiers of Optoelectronics.

[67]  Harald Giessen,et al.  Nanoantenna-enhanced gas sensing in a single tailored nanofocus , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[68]  Martina Gerken,et al.  Photonic crystal biosensors towards on‐chip integration , 2012, Journal of biophotonics.

[69]  Masaya Notomi,et al.  Manipulating light with strongly modulated photonic crystals , 2010 .

[70]  M. El-Sayed,et al.  Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. , 2006, The journal of physical chemistry. B.

[71]  Nano-Kelvin thermometry and temperature control: beyond the thermal noise limit. , 2014, Physical review letters.

[72]  Hybrid metal-dielectric nanocavity for enhanced light-matter interactions , 2014, 1406.7050.

[73]  Luke P. Lee,et al.  Bioinspired optical antennas: gold plant viruses , 2015, Light: Science & Applications.

[74]  S. Ozdemir,et al.  Detecting single viruses and nanoparticles using whispering gallery microlasers. , 2011, Nature nanotechnology.

[75]  Stephen Arnold,et al.  Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications , 2006 .

[76]  Ray T. Chen,et al.  193nm Lithography fabricated high sensitivity photonic crystal microcavity biosensors for plasma protein detection in patients with pancreatic cancer , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[77]  David Erickson,et al.  Controlled photonic manipulation of proteins and other nanomaterials. , 2012, Nano letters.

[78]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[79]  Yong Zhao,et al.  A review for optical sensors based on photonic crystal cavities , 2015 .

[80]  Ray T. Chen,et al.  Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors. , 2014, Applied physics letters.

[81]  David Erickson,et al.  Nanophotonic detection of freely interacting molecules on a single influenza virus , 2015, Scientific Reports.

[82]  Ray T. Chen,et al.  Flexible single-crystal silicon nanomembrane photonic crystal cavity. , 2014, ACS nano.

[83]  Zachary S. Ballard,et al.  Stand-Off Biodetection with Free-Space Coupled Asymmetric Microsphere Cavities , 2015, Sensors.

[84]  Michael J. Campolongo,et al.  Building plasmonic nanostructures with DNA. , 2011, Nature nanotechnology.

[85]  Yue Zhuo,et al.  Single nanoparticle detection using photonic crystal enhanced microscopy. , 2014, The Analyst.

[86]  D. Weitz,et al.  Self-assembled shells composed of colloidal particles: fabrication and characterization. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[87]  Y. Gun’ko,et al.  Recent progress in chiral inorganic nanostructures , 2016 .

[88]  Serge Rosenblum,et al.  Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators , 2015, Nature Communications.

[89]  Joachim Knittel,et al.  Detection limits in whispering gallery biosensors with plasmonic enhancement , 2011 .

[90]  Ariane M. Vartanian,et al.  Surface Chemistry of Gold Nanorods. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[91]  Xianmao Lu,et al.  Highly Symmetric Gold Nanostars: Crystallographic Control and Surface-Enhanced Raman Scattering Property. , 2015, Journal of the American Chemical Society.

[92]  L. Rayleigh,et al.  XVII. On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure , 1887 .

[93]  S. Maerkl,et al.  LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. , 2014, Nano letters.

[94]  Q. Quan,et al.  Detecting Single Gold Nanoparticles (1.8 nm) with Ultrahigh-Q Air-Mode Photonic Crystal Nanobeam Cavities , 2015 .

[95]  Molly M. Miller,et al.  Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. , 2005, The journal of physical chemistry. B.

[96]  K. Ohtaka Energy band of photons and low-energy photon diffraction , 1979 .

[97]  Kerry J. Vahala,et al.  Chemically etched ultrahigh-Q wedge-resonator on a silicon chip , 2012, Nature Photonics.

[98]  Nianqiang Wu,et al.  Plasmon-enhanced optical sensors: a review. , 2015, The Analyst.

[99]  Shota Kita,et al.  Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. , 2007, Optics express.

[100]  L. Sapienza,et al.  Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides. , 2013, Optics express.

[101]  Brian T. Cunningham,et al.  Recent Advances in Biosensing With Photonic Crystal Surfaces: A Review , 2016, IEEE Sensors Journal.

[102]  Reuven Gordon,et al.  Optical trapping of a single protein. , 2012, Nano letters.

[103]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[104]  Seyedeh Mahsa Kamali,et al.  Hybrid whispering gallery mode/plasmonic chain ring resonators for biosensing , 2014 .

[105]  Na Liu,et al.  DNA-assembled bimetallic plasmonic nanosensors , 2014, Light: Science & Applications.

[106]  Harald Giessen,et al.  Simple analytical expression for the peak-frequency shifts of plasmonic resonances for sensing. , 2015, Nano letters.

[107]  Shikuan Yang,et al.  Ultrasensitive surface-enhanced Raman scattering detection in common fluids , 2015, Proceedings of the National Academy of Sciences.

[108]  Dieter Braun,et al.  Protein detection by optical shift of a resonant microcavity , 2002 .

[109]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[110]  Zheng Wang,et al.  Electrokinetic Manipulation Integrated Plasmonic-Photonic Hybrid Raman Nanosensors with Dually Enhanced Sensitivity. , 2017, ACS sensors.

[111]  Toshihiko Baba,et al.  Biosensing using photonic crystal nanolasers , 2015 .

[112]  R. Gelfand,et al.  Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution , 2014, Nature Photonics.

[113]  M. V. Ötügen,et al.  Electric field-induced deformation of polydimethylsiloxane polymers , 2012 .

[114]  M. Foreman,et al.  Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles , 2013 .

[115]  Lan Yang,et al.  Demonstration of mode splitting in an optical microcavity in aqueous environment , 2010 .

[116]  Vladimir S. Ilchenko,et al.  Ultrahigh optical Q factors of crystalline resonators in the linear regime , 2006 .

[117]  Tobias J Kippenberg,et al.  Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. , 2014, Nature nanotechnology.

[118]  L. Liz‐Marzán,et al.  Sensing using plasmonic nanostructures and nanoparticles , 2015, Nanotechnology.

[119]  Oskar Painter,et al.  Optomechanics in an ultrahigh-Q two-dimensional photonic crystal cavity , 2010, 1006.3964.

[120]  H. Gaub,et al.  Placing individual molecules in the center of nanoapertures. , 2014, Nano letters.

[121]  C. Mirkin,et al.  Polyelemental nanoparticle libraries , 2016, Science.

[122]  James E. Baker,et al.  Recognition-mediated particle detection under microfluidic flow with waveguide-coupled 2D photonic crystals: towards integrated photonic virus detectors. , 2017, Lab on a chip.

[123]  Liping Huang,et al.  Silica–Gold Core–Shell Nanosphere for Ultrafast Dynamic Nanothermometer , 2014 .

[124]  Frank Vollmer,et al.  Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity. , 2012, Journal of biophotonics.

[125]  Florian Sedlmeir,et al.  High-Q MgF₂ whispering gallery mode resonators for refractometric sensing in aqueous environment. , 2014, Optics express.

[126]  Brian T. Cunningham,et al.  Label-Free Biosensor Imaging on Photonic Crystal Surfaces , 2015, Sensors.

[127]  Thijs van Leest,et al.  Cavity-enhanced optical trapping of bacteria using a silicon photonic crystal. , 2013, Lab on a chip.

[128]  Peter Nordlander,et al.  Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance , 2014, Nature Communications.

[129]  J. Biteen,et al.  Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale. , 2015, Nano letters.

[130]  J. Strutt Scientific Papers: On the Maintenance of Vibrations by Forces of Double Frequency, and on the Propagation of Waves through a Medium endowed with a Periodic Structure , 2009 .

[131]  Lin Wu,et al.  Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions , 2014, Science.

[132]  A. Di Falco,et al.  Slotted photonic crystal cavities with integrated microfluidics for biosensing applications. , 2011, Biosensors & bioelectronics.

[133]  R. Ilic,et al.  Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder. , 2009, Optics express.

[134]  Q. Gong,et al.  Free-space coupling efficiency in a high-Q deformed optical microcavity. , 2016, Optics letters.

[135]  Axel Scherer,et al.  Photonic crystal laser sources for chemical detection , 2003 .

[136]  Sarit S. Agasti,et al.  Gold nanoparticles in chemical and biological sensing. , 2012, Chemical reviews.

[137]  M. Gonçalves Plasmonic nanoparticles: fabrication, simulation and experiments , 2014 .

[138]  Tao Zhang,et al.  DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering , 2014, Nature Communications.

[139]  Hiroaki Misawa,et al.  Super-sensitivity in label-free protein sensing using a nanoslot nanolaser. , 2011, Optics express.

[140]  R. Gordon,et al.  Label-Free Free-Solution Single-Molecule Protein–Small Molecule Interaction Observed by Double-Nanohole Plasmonic Trapping , 2014 .

[141]  Francesco De Angelis,et al.  A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. , 2008, Nano letters.

[142]  M. Orrit,et al.  Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. , 2012, Nature nanotechnology.

[143]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[144]  Matthew R. Foreman,et al.  Optimizing detection limits in whispering gallery mode biosensing. , 2014, Optics express.

[145]  Lan Yang,et al.  Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser , 2014, Proceedings of the National Academy of Sciences.

[146]  Wenqi Zhu,et al.  Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity. , 2013, Nano letters.

[147]  Juejun Hu,et al.  Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[148]  Stephen Holler,et al.  Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection , 2011 .

[149]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[150]  Vladimir S. Ilchenko,et al.  Ultimate Q of optical microsphere resonators , 1996, Other Conferences.

[151]  K. Crozier,et al.  Trapping-assisted sensing of particles and proteins using on-chip optical microcavities. , 2013, ACS nano.

[152]  Feng Liang,et al.  Scalable photonic crystal chips for high sensitivity protein detection. , 2013, Optics express.

[153]  Jeremy J. Baumberg,et al.  Single-molecule optomechanics in “picocavities” , 2016, Science.

[154]  Ray T. Chen,et al.  The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays. , 2014, Applied physics letters.

[155]  Sanja Zlatanovic,et al.  Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration , 2009 .

[156]  K. Vahala Optical microcavities , 2003, Nature.

[157]  L. Liz‐Marzán,et al.  Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering , 2016, Nature materials.

[158]  Philippe Lalanne,et al.  Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance , 2006 .

[159]  Gary Shambat,et al.  Single-cell photonic nanocavity probes , 2014, Photonics West - Biomedical Optics.

[160]  J. Arbiol,et al.  Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications , 2017 .

[161]  Vladimir P. Bykov Spontaneous Emission in a Periodic Structure , 1972 .

[162]  Alan X. Wang,et al.  Optofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica. , 2016, Nanoscale.

[163]  Javier Aizpurua,et al.  Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities. , 2015, ACS nano.

[164]  Jun Chen,et al.  Tunable plasmonic coupling in self-assembled binary nanocrystal superlattices studied by correlated optical microspectrophotometry and electron microscopy. , 2013, Nano letters.

[165]  Wenqi Zhu,et al.  Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering , 2014, Nature Communications.

[166]  Susumu Noda,et al.  Photonic crystal nanocavity with a Q factor exceeding eleven million. , 2017, Optics express.

[167]  Yu-Ming Chang,et al.  Large-Scale Hot Spot Engineering for Quantitative SERS at the Single-Molecule Scale. , 2015, Journal of the American Chemical Society.

[168]  P. Fauchet,et al.  Nanoscale microcavity sensor for single particle detection. , 2007, Optics letters.

[169]  Wei Wang,et al.  Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening , 2013, Advanced materials.

[170]  Matthew R Foreman,et al.  Whispering gallery mode sensors. , 2015, Advances in optics and photonics.

[171]  J. Haigh,et al.  Triple-Resonant Brillouin Light Scattering in Magneto-Optical Cavities. , 2016, Physical review letters.

[172]  Hiroaki Misawa,et al.  Photonic Crystal Nanolaser Biosensors , 2012, IEICE Trans. Electron..

[173]  Reuven Gordon,et al.  Characterization of Individual Magnetic Nanoparticles in Solution by Double Nanohole Optical Tweezers. , 2016, Nano letters.

[174]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[175]  D. Erickson,et al.  Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials , 2010, Nanotechnology.

[176]  Xiang Zhang,et al.  Hybrid photonic-plasmonic crystal nanocavities. , 2011, ACS nano.

[177]  P. Fauchet,et al.  Two-dimensional silicon photonic crystal based biosensing platform for protein detection. , 2007, Optics express.

[178]  Mark A Lifson,et al.  Selective virus detection in complex sample matrices with photonic crystal optical cavities. , 2013, Biosensors & bioelectronics.

[179]  P. Patra,et al.  Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles. , 2014, Nature communications.

[180]  B. Ilic,et al.  Experimental observation of strong photon localization in disordered photonic crystal waveguides. , 2007, Physical review letters.

[181]  Kebin Shi,et al.  Single nanoparticle detection using split-mode microcavity Raman lasers , 2014, Proceedings of the National Academy of Sciences.

[182]  Guangya Zhou,et al.  Design of an ultra-compact slotted photonic crystal nanobeam cavity for biosensing , 2015 .

[183]  Francesco De Angelis,et al.  3D Nanostar Dimers with a Sub‐10‐nm Gap for Single‐/Few‐Molecule Surface‐Enhanced Raman Scattering , 2014, Advanced materials.

[184]  K. Busch,et al.  In situ observation of plasmon tuning in a single gold nanoparticle during controlled melting. , 2013, Nano letters.

[185]  Steven G. Johnson,et al.  Linear waveguides in photonic-crystal slabs , 2000 .

[186]  Olivier J. F. Martin,et al.  A Universal Law for Plasmon Resonance Shift in Biosensing , 2015 .

[187]  Utkan Demirci,et al.  Photonic crystals: emerging biosensors and their promise for point-of-care applications. , 2017, Chemical Society reviews.

[188]  Andreas Henkel,et al.  Single unlabeled protein detection on individual plasmonic nanoparticles. , 2012, Nano letters.

[189]  C. Ciminelli,et al.  Design of an Optical Trapping Device Based on an Ultra-High Q/V Resonant Structure , 2014, IEEE Photonics Journal.

[190]  J. Arbiol,et al.  Tuning the Plasmonic Response up: Hollow Cuboid Metal Nanostructures , 2016 .

[191]  M. Cortie,et al.  Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. , 2011, Chemical reviews.

[192]  Paulina S. Kuo,et al.  4-quasi-phasematching in a GaAs whispering-gallery-mode microcavity , 2014 .

[193]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[194]  V. A. Apkarian,et al.  Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering , 2014, Nature Photonics.

[195]  Junjie Li,et al.  Directly patterned substrate-free plasmonic “nanograter” structures with unusual Fano resonances , 2015, Light: Science & Applications.

[196]  Andrea Di Falco,et al.  Slotted Photonic Crystal Sensors , 2013, Sensors.

[197]  Ray T. Chen,et al.  Multiplexed specific label-free detection of NCI-H358 lung cancer cell line lysates with silicon based photonic crystal microcavity biosensors. , 2013, Biosensors & bioelectronics.

[198]  Matthew R Foreman,et al.  Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. , 2014, Nature nanotechnology.

[199]  Nam-Joon Cho,et al.  Strategies for enhancing the sensitivity of plasmonic nanosensors , 2015 .