Formation of vanadium-based ohmic contacts to n-GaN

We investigate vanadium (V)-based ohmic contacts on n-GaN (Nd=2.0×1018 cm−3) as a function of annealing temperature. It is shown that the V (60 nm) contacts become ohmic with specific contact resistances of 10−3–10−4 Ω cm2 upon annealing at 650 and 850 °C. The V (20 nm)/Ti (60 nm)/Au (20 nm) contacts produce very low specific contact resistances of 2.2×10−5 and 4.0×10−6 Ω cm2 when annealed at 650 and 850 °C, respectively. A comparison shows that the use of the overlayers (Ti/Au) is very effective in improving ohmic property. Based on Auger electron spectroscopy and glancing-angle x-ray diffraction results, possible explanations for the annealing temperature dependence of the ohmic behavior of the V-based contacts are described and discussed.

[1]  M. M. Wong,et al.  Ohmic contacts to Al-rich n-AlGaN , 2002 .

[2]  I. Ferguson,et al.  Low-resistance and thermally stable Pd/Ru ohmic contacts to p-type GaN , 2002 .

[3]  T. Seong,et al.  Effects of sulfur passivation on Ti/Al ohmic contacts to n-type GaN using CH3CSNH2 solution , 2002 .

[4]  S. Mohney,et al.  V/Al/Pt/Au Ohmic contact to n-AlGaN/GaN heterostructures , 2002 .

[5]  Y. Lin,et al.  Investigation of oxidation mechanism for ohmic formation in Ni/Au contacts to p-type GaN layers , 2001 .

[6]  J. Han,et al.  Crystal-polarity dependence of Ti/Al contacts to freestanding n-GaN substrate , 2001 .

[7]  T. Seong,et al.  Low-resistance Ti/Au ohmic contacts to Al-doped ZnO layers , 2000 .

[8]  T. Seong,et al.  Mechanisms for the reduction of the Schottky barrier heights of high-quality nonalloyed Pt contacts on surface-treated p-GaN , 2000 .

[9]  W. Lanford,et al.  Low resistance Ti'Pt'Au ohmic contacts to p-type GaN , 2000 .

[10]  Seong Jun Park,et al.  Metallization scheme for highly low-resistance, transparent, and thermally stable Ohmic contacts to p-GaN , 2000 .

[11]  F. J. Himpsel,et al.  p-GaN surface treatments for metal contacts , 2000 .

[12]  Y. Koide,et al.  Effects of NiO on electrical properties of NiAu-based ohmic contacts for p-type GaN , 1999 .

[13]  Seong Jun Park,et al.  Formation of low resistance Pt ohmic contacts to p-type GaN using two-step surface treatment , 1999 .

[14]  R. J. Shul,et al.  GAN : PROCESSING, DEFECTS, AND DEVICES , 1999 .

[15]  Taeil Kim,et al.  Effect of surface treatment by KOH solution on ohmic contact formation of p-type GaN , 1999 .

[16]  T. Jackson,et al.  Titanium and titanium nitride contacts to n-type gallium nitride , 1998 .

[17]  D. Zahn,et al.  Sulphide passivation of GaAs: the role of the sulphur chemical activity , 1998 .

[18]  A. Wickenden,et al.  The dependence of the structure and electronic properties of wurtzite GaN surfaces on the method of preparation , 1998 .

[19]  F. Patrick McCluskey,et al.  High Temperature Electronics , 1997 .

[20]  Thomas N. Jackson,et al.  Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN , 1997 .

[21]  H. Morkoç,et al.  Very low resistance multilayer Ohmic contact to n‐GaN , 1996 .

[22]  Shuji Nakamura,et al.  High‐power InGaN single‐quantum‐well‐structure blue and violet light‐emitting diodes , 1995 .

[23]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[24]  L. Rowland,et al.  Microwave performance of GaN MESFETs , 1994 .

[25]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .

[26]  H. Morkoç,et al.  Low resistance ohmic contacts on wide band‐gap GaN , 1994 .

[27]  H. Morkoç,et al.  GaN, AlN, and InN: A review , 1992 .

[28]  F. Himpsel,et al.  The oxidation of GaAs(110): A reevaluation , 1984 .

[29]  G. K. Reeves,et al.  Obtaining the specific contact resistance from transmission line model measurements , 1982, IEEE Electron Device Letters.