Probing multipartite entanglement through persistent homology
暂无分享,去创建一个
[1] vCaslav Brukner,et al. Quantum Reference Frames for Lorentz Symmetry , 2022, 2212.14081.
[2] Edgar Solomonik,et al. Tensor Rank and Other Multipartite Entanglement Measures of Graph States , 2022, 2209.06320.
[3] B. Olsthoorn. Persistent homology of quantum entanglement , 2021, Physical Review B.
[4] Patrick J. Coles,et al. Computable and Operationally Meaningful Multipartite Entanglement Measures. , 2021, Physical review letters.
[5] M. Junge,et al. Quantum secret sharing and tripartite information , 2020, 2023 IEEE International Symposium on Information Theory (ISIT).
[6] Stefano Mancini,et al. Persistent homology analysis of multiqubit entanglement , 2019, Quantum Inf. Comput..
[7] Tom Mainiero. Homological Tools for the Quantum Mechanic , 2019, 1901.02011.
[8] M. Schmitt,et al. Tripartite information, scrambling, and the role of Hilbert space partitioning in quantum lattice models , 2018, Physical Review B.
[9] G. Gour,et al. Quantum resource theories , 2018, Reviews of Modern Physics.
[10] Alessandra Di Pierro,et al. Homological analysis of multi-qubit entanglement , 2018, EPL (Europhysics Letters).
[11] N. Datta,et al. Approaches for approximate additivity of the Holevo information of quantum channels , 2017, Physical Review A.
[12] J. Siewert,et al. Distribution of entanglement and correlations in all finite dimensions , 2017, 1708.09639.
[13] Primoz Skraba,et al. Randomly Weighted d-Complexes: Minimal Spanning Acycles and Persistence Diagrams , 2017, Electron. J. Comb..
[14] M. Walter,et al. Multipartite Entanglement in Stabilizer Tensor Networks. , 2016, Physical review letters.
[15] P. Hayden,et al. Holographic duality from random tensor networks , 2016, 1601.01694.
[16] Daniel A. Roberts,et al. Chaos in quantum channels , 2015, 1511.04021.
[17] Mason A. Porter,et al. A roadmap for the computation of persistent homology , 2015, EPJ Data Science.
[18] Mark M Wilde,et al. Multipartite quantum correlations and local recoverability , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[19] Mikael Vejdemo-Johansson,et al. javaPlex: A Research Software Package for Persistent (Co)Homology , 2014, ICMS.
[20] Ulrich Bauer,et al. Induced matchings and the algebraic stability of persistence barcodes , 2013, J. Comput. Geom..
[21] N. Wallach,et al. Classification of multipartite entanglement of all finite dimensionality. , 2013, Physical review letters.
[22] Laura Mančinska,et al. Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.
[23] Matthias Christandl,et al. Entanglement Polytopes: Multiparticle Entanglement from Single-Particle Information , 2012, Science.
[24] Omer Bobrowski,et al. EULER INTEGRATION OF GAUSSIAN RANDOM FIELDS AND PERSISTENT HOMOLOGY , 2010, 1003.5175.
[25] Graeme Smith,et al. Quantum Communication with Zero-Capacity Channels , 2008, Science.
[26] Koenraad M.R. Audenaert,et al. Subadditivity of q-entropies for q>1 , 2007, 0705.1276.
[27] J. Oppenheim,et al. Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof , 2007, IEEE Transactions on Information Theory.
[28] J. Eisert,et al. Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.
[29] J. Preskill,et al. Topological entanglement entropy. , 2005, Physical review letters.
[30] A. Osterloh,et al. ENTANGLEMENT MONOTONES AND MAXIMALLY ENTANGLED STATES IN MULTIPARTITE QUBIT SYSTEMS , 2005, quant-ph/0506073.
[31] David Cohen-Steiner,et al. Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..
[32] S. Lloyd,et al. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.
[33] Afra Zomorodian,et al. Computing Persistent Homology , 2004, SCG '04.
[34] 今井 浩. 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .
[35] F. Herbut. On mutual information in multipartite quantum states and equality in strong subadditivity of entropy , 2003, quant-ph/0311193.
[36] D. Leung. Quantum computation by measurements , 2003, quant-ph/0310189.
[37] Bahaa E. A. Saleh,et al. Entanglement, mixedness, and spin-flip symmetry in multiple-qubit systems , 2003, quant-ph/0307124.
[38] Shengjun Wu,et al. What is quantum entanglement , 2003 .
[39] Michael A. Nielsen,et al. Quantum computation by measurement and quantum memory , 2003 .
[40] M. Teich,et al. Multiphoton Stokes-parameter invariant for entangled states , 2003, quant-ph/0301128.
[41] H. Briegel,et al. Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.
[42] R. Jozsa,et al. On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[43] B. Moor,et al. Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.
[44] H. Briegel,et al. Computational model underlying the one-way quantum computer , 2001, Quantum Inf. Comput..
[45] R Raussendorf,et al. A one-way quantum computer. , 2001, Physical review letters.
[46] B. Moor,et al. Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.
[47] E. Knill,et al. A scheme for efficient quantum computation with linear optics , 2001, Nature.
[48] Herbert Edelsbrunner,et al. Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[49] N. Christensen,et al. Potential multiparticle entanglement measure , 2000, quant-ph/0010052.
[50] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[51] Isaac L. Chuang,et al. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.
[52] W. Wootters,et al. Distributed Entanglement , 1999, quant-ph/9907047.
[53] Guifre Vidal,et al. Entanglement monotones , 1998, quant-ph/9807077.
[54] M. Plenio,et al. Quantifying Entanglement , 1997, quant-ph/9702027.
[55] Wineland,et al. Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[56] G. A. Raggio. Properties of q‐entropies , 1995 .
[57] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[58] Wineland,et al. Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[59] Holland,et al. Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.
[60] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[61] Charles H. Bennett,et al. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.
[62] Ekert,et al. Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.
[63] C. Caves. Quantum Mechanical Noise in an Interferometer , 1981 .
[64] A. Winter,et al. 04 10 09 1 v 2 1 F eb 2 00 5 On the quantum , classical and total amount of correlations in a quantum state , 2022 .
[65] Ray R LaPierre. Entanglement , 2021, The Materials Research Society Series.
[66] A. Lichnerowicz. Proof of the Strong Subadditivity of Quantum-Mechanical Entropy , 2018 .
[67] Michael Satosi Watanabe,et al. Information Theoretical Analysis of Multivariate Correlation , 1960, IBM J. Res. Dev..
[68] R. Ho. Algebraic Topology , 2022 .