Probing multipartite entanglement through persistent homology

We propose a study of multipartite entanglement through persistent homology, a tool used in topological data analysis. In persistent homology, a 1-parameter filtration of simplicial complexes called persistence complex is used to reveal persistent topological features of the underlying data set. This is achieved via the computation of homological invariants that can be visualized as a persistence barcode encoding all relevant topological information. In this work, we apply this technique to study multipartite quantum systems by interpreting the individual systems as vertices of a simplicial complex. To construct a persistence complex from a given multipartite quantum state, we use a generalization of the bipartite mutual information called the deformed total correlation. Computing the persistence barcodes of this complex yields a visualization or `topological fingerprint' of the multipartite entanglement in the quantum state. The barcodes can also be used to compute a topological summary called the integrated Euler characteristic of a persistence complex. We show that in our case this integrated Euler characteristic is equal to the deformed interaction information, another multipartite version of mutual information. When choosing the linear entropy as the underlying entropy, this deformed interaction information coincides with the $n$-tangle, a well-known entanglement measure. The persistence barcodes thus provide more fine-grained information about the entanglement structure than its topological summary, the $n$-tangle, alone, which we illustrate with examples of pairs of states with identical $n$-tangle but different barcodes. Furthermore, a variant of persistent homology computed relative to a fixed subset yields an interesting connection to strong subadditivity and entropy inequalities. We also comment on a possible generalization of our approach to arbitrary resource theories.

[1]  vCaslav Brukner,et al.  Quantum Reference Frames for Lorentz Symmetry , 2022, 2212.14081.

[2]  Edgar Solomonik,et al.  Tensor Rank and Other Multipartite Entanglement Measures of Graph States , 2022, 2209.06320.

[3]  B. Olsthoorn Persistent homology of quantum entanglement , 2021, Physical Review B.

[4]  Patrick J. Coles,et al.  Computable and Operationally Meaningful Multipartite Entanglement Measures. , 2021, Physical review letters.

[5]  M. Junge,et al.  Quantum secret sharing and tripartite information , 2020, 2023 IEEE International Symposium on Information Theory (ISIT).

[6]  Stefano Mancini,et al.  Persistent homology analysis of multiqubit entanglement , 2019, Quantum Inf. Comput..

[7]  Tom Mainiero Homological Tools for the Quantum Mechanic , 2019, 1901.02011.

[8]  M. Schmitt,et al.  Tripartite information, scrambling, and the role of Hilbert space partitioning in quantum lattice models , 2018, Physical Review B.

[9]  G. Gour,et al.  Quantum resource theories , 2018, Reviews of Modern Physics.

[10]  Alessandra Di Pierro,et al.  Homological analysis of multi-qubit entanglement , 2018, EPL (Europhysics Letters).

[11]  N. Datta,et al.  Approaches for approximate additivity of the Holevo information of quantum channels , 2017, Physical Review A.

[12]  J. Siewert,et al.  Distribution of entanglement and correlations in all finite dimensions , 2017, 1708.09639.

[13]  Primoz Skraba,et al.  Randomly Weighted d-Complexes: Minimal Spanning Acycles and Persistence Diagrams , 2017, Electron. J. Comb..

[14]  M. Walter,et al.  Multipartite Entanglement in Stabilizer Tensor Networks. , 2016, Physical review letters.

[15]  P. Hayden,et al.  Holographic duality from random tensor networks , 2016, 1601.01694.

[16]  Daniel A. Roberts,et al.  Chaos in quantum channels , 2015, 1511.04021.

[17]  Mason A. Porter,et al.  A roadmap for the computation of persistent homology , 2015, EPJ Data Science.

[18]  Mark M Wilde,et al.  Multipartite quantum correlations and local recoverability , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Mikael Vejdemo-Johansson,et al.  javaPlex: A Research Software Package for Persistent (Co)Homology , 2014, ICMS.

[20]  Ulrich Bauer,et al.  Induced matchings and the algebraic stability of persistence barcodes , 2013, J. Comput. Geom..

[21]  N. Wallach,et al.  Classification of multipartite entanglement of all finite dimensionality. , 2013, Physical review letters.

[22]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.

[23]  Matthias Christandl,et al.  Entanglement Polytopes: Multiparticle Entanglement from Single-Particle Information , 2012, Science.

[24]  Omer Bobrowski,et al.  EULER INTEGRATION OF GAUSSIAN RANDOM FIELDS AND PERSISTENT HOMOLOGY , 2010, 1003.5175.

[25]  Graeme Smith,et al.  Quantum Communication with Zero-Capacity Channels , 2008, Science.

[26]  Koenraad M.R. Audenaert,et al.  Subadditivity of q-entropies for q>1 , 2007, 0705.1276.

[27]  J. Oppenheim,et al.  Squashed Entanglement for Multipartite States and Entanglement Measures Based on the Mixed Convex Roof , 2007, IEEE Transactions on Information Theory.

[28]  J. Eisert,et al.  Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.

[29]  J. Preskill,et al.  Topological entanglement entropy. , 2005, Physical review letters.

[30]  A. Osterloh,et al.  ENTANGLEMENT MONOTONES AND MAXIMALLY ENTANGLED STATES IN MULTIPARTITE QUBIT SYSTEMS , 2005, quant-ph/0506073.

[31]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[32]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[33]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[34]  今井 浩 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .

[35]  F. Herbut On mutual information in multipartite quantum states and equality in strong subadditivity of entropy , 2003, quant-ph/0311193.

[36]  D. Leung Quantum computation by measurements , 2003, quant-ph/0310189.

[37]  Bahaa E. A. Saleh,et al.  Entanglement, mixedness, and spin-flip symmetry in multiple-qubit systems , 2003, quant-ph/0307124.

[38]  Shengjun Wu,et al.  What is quantum entanglement , 2003 .

[39]  Michael A. Nielsen,et al.  Quantum computation by measurement and quantum memory , 2003 .

[40]  M. Teich,et al.  Multiphoton Stokes-parameter invariant for entangled states , 2003, quant-ph/0301128.

[41]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[42]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[44]  H. Briegel,et al.  Computational model underlying the one-way quantum computer , 2001, Quantum Inf. Comput..

[45]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[46]  B. Moor,et al.  Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.

[47]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[48]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[49]  N. Christensen,et al.  Potential multiparticle entanglement measure , 2000, quant-ph/0010052.

[50]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[51]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[52]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[53]  Guifre Vidal,et al.  Entanglement monotones , 1998, quant-ph/9807077.

[54]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[55]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[56]  G. A. Raggio Properties of q‐entropies , 1995 .

[57]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[58]  Wineland,et al.  Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[59]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[60]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[61]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[62]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[63]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[64]  A. Winter,et al.  04 10 09 1 v 2 1 F eb 2 00 5 On the quantum , classical and total amount of correlations in a quantum state , 2022 .

[65]  Ray R LaPierre Entanglement , 2021, The Materials Research Society Series.

[66]  A. Lichnerowicz Proof of the Strong Subadditivity of Quantum-Mechanical Entropy , 2018 .

[67]  Michael Satosi Watanabe,et al.  Information Theoretical Analysis of Multivariate Correlation , 1960, IBM J. Res. Dev..

[68]  R. Ho Algebraic Topology , 2022 .