Projective Geometry II: Cones and Complete Classifications

The aim of this paper and its prequel is to introduce and classify the irreducible holonomy algebras of the projective Tractor connection. This is achieved through the construction of a `projective cone', a Ricci-flat manifold one dimension higher whose affine holonomy is equal to the Tractor holonomy of the underlying manifold. This paper uses the result to enable the construction of manifolds with each possible holonomy algebra.

[1]  S. Armstrong,et al.  Projective holonomy I: principles and properties , 2008 .

[2]  S. Armstrong,et al.  Definite signature conformal holonomy: A complete classification , 2005, math/0503388.

[3]  Felipe Leitner Normal Conformal Killing Forms , 2004, math/0406316.

[4]  C. Fefferman,et al.  Ambient metric construction of Q-curvature in conformal and CR geometries , 2003, math/0303184.

[5]  C. Bohle Killing spinors on Lorentzian manifolds , 2003 .

[6]  A. Gover,et al.  Standard Tractors and the Conformal Ambient Metric Construction , 2002, math/0207016.

[7]  M. Nakamaye,et al.  Sasakian Geometry, Homotopy Spheres and Positive Ricci Curvature , 2002, math/0201147.

[8]  M. L. Barberis Affine connections on homogeneous hypercomplex manifolds , 1999 .

[9]  L. Schwachhofer,et al.  Classification of irreducible holonomies of torsion-free affine connections , 1999, math/9907206.

[10]  Y. Poon,et al.  Hypercomplex structures associated to quaternionic manifolds , 1998 .

[11]  D. Alekseevsky,et al.  Quaternionic structures on a manifold and subordinated structures , 1996 .

[12]  Robert L. Bryant,et al.  Metrics with exceptional holonomy , 1987 .

[13]  Shôshichi Kobayashi,et al.  Holomorphic projective structures on compact complex surfaces , 1980 .

[14]  D. Struik Review: T. Y. Thomas, The Differential Invariants of Generalized Spaces , 1935 .

[15]  D. Calderbank MOBIUS STRUCTURES AND TWO DIMENSIONAL EINSTEIN-WEYL GEOMETRY , 1998 .

[16]  Robert Molzon,et al.  The Schwarzian derivative for maps between manifolds with complex projective connections , 1996 .

[17]  D. joyce Compact hypercomplex and quaternionic manifolds , 1992 .

[18]  T. Friedrich,et al.  Twistors and killing spinors on riemannian manifolds , 1991 .

[19]  C. LeBrun Spaces of complex null geodesics in complex-Riemannian geometry , 1983 .

[20]  E. Cartan,et al.  Sur les variétés à connexion projective , 1924 .