The Monge metric on the sphere and geometry of quantum states

Topological and geometrical properties of the set of mixed quantum states in the N-dimensional Hilbert space are analysed. Assuming that the corresponding classical dynamics takes place on the sphere we use the vector SU(2) coherent states and the generalized Husimi distributions to define the Monge distance between two arbitrary density matrices. The Monge metric has a simple semiclassical interpretation and induces a non-trivial geometry. Among all pure states the distance from the maximally mixed state ρ*, proportional to the identity matrix, admits the largest value for the coherent states, while the delocalized `chaotic' states are close to ρ*. This contrasts the geometry induced by the standard (trace, Hilbert-Schmidt or Bures) metrics, for which the distance from ρ* is the same for all pure states. We discuss possible physical consequences including unitary time evolution and the process of decoherence. We introduce also a simplified Monge metric, defined in the space of pure quantum states and more suitable for numerical computation.

[1]  Abhay Ashtekar,et al.  Geometry of quantum mechanics , 2008 .

[2]  G. Constantain,et al.  Probability Metrics and the Stability of Stochastic Models , 1995 .

[3]  Giovanna Corsi,et al.  Bridging the gap: philosophy, mathematics, and physics , 1993 .

[4]  K. Życzkowski Localization of eigenstates and mean Wehrl entropy , 1999, quant-ph/9910088.

[5]  D. Brody,et al.  Geometric quantum mechanics , 1999, quant-ph/9906086.

[6]  P. Schupp On Lieb's Conjecture for the Wehrl Entropy¶of Bloch Coherent States , 1999, math-ph/9902017.

[7]  V. Man'ko,et al.  ENERGY-SENSITIVE AND CLASSICAL-LIKE' DISTANCES BETWEEN QUANTUM STATES , 1998, quant-ph/9810085.

[8]  P. Slater A priori probabilities of separable quantum states , 1998, quant-ph/9810026.

[9]  Andrew S. Lesniewski,et al.  Monotone Riemannian metrics and relative entropy on noncommutative probability spaces , 1998, math-ph/9808016.

[10]  M. Lewenstein,et al.  On the volume of the set of mixed entangled states II , 1999, quant-ph/9902050.

[11]  L. Evans,et al.  Differential equations methods for the Monge-Kantorovich mass transfer problem , 1999 .

[12]  J. Dittmann Explicit formulae for the Bures metric , 1998, quant-ph/9808044.

[13]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[14]  S. C. Lim,et al.  Frontiers in quantum physics , 1998 .

[15]  W. Zurek Decoherence, chaos, quantum-classical correspondence, and the algorithmic arrow of time , 1998, quant-ph/9802054.

[16]  Wojciech Słomczyński,et al.  The Monge distance between quantum states , 1997, quant-ph/9711011.

[17]  Karol Zyczkowski,et al.  Mean Dynamical Entropy of Quantum Maps on the Sphere Diverges in the Semiclassical Limit , 1997, chao-dyn/9707008.

[18]  K. Życzkowski,et al.  Composed ensembles of random unitary matrices , 1997, chao-dyn/9707006.

[19]  S. Rachev,et al.  Mass transportation problems , 1998 .

[20]  B. Englert,et al.  Fringe Visibility and Which-Way Information: An Inequality. , 1996, Physical review letters.

[21]  D. Petz,et al.  Geometries of quantum states , 1996 .

[22]  Paul B. Slater,et al.  LETTER TO THE EDITOR: Quantum Fisher - Bures information of two-level systems and a three-level extension , 1996 .

[23]  J. Hannay,et al.  Chaotic analytic zero points: exact statistics for those of a random spin state , 1996 .

[24]  A. Uhlmann Spheres and hemispheres as quantum state spaces , 1996 .

[25]  Paul Busch,et al.  PROBABILITY STRUCTURES FOR QUANTUM STATE SPACES , 1995 .

[26]  J. Dittmann On the Riemannian metric on the space of density matrices , 1995 .

[27]  A. Uhlmann GEOMETRIC PHASES AND RELATED STRUCTURES , 1995 .

[28]  V. Vieira,et al.  Generalized Phase-Space Representatives of Spin- J Operators in Terms of Bloch Coherent States , 1995 .

[29]  R. Blümel The dynamic Kingdon trap: A novel design for the storage and crystallization of laser-cooled ions , 1995 .

[30]  Orłowski,et al.  Distance between density operators: Applications to the Jaynes-Cummings model. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[31]  G. Constantain,et al.  Probability Metrics and the Stability of Stochastic Models , 1995 .

[32]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[33]  R. Penrose,et al.  Shadows of the Mind , 1994 .

[34]  J. V. Corbett,et al.  The geometry of state space , 1993 .

[35]  Giovanna Corsi,et al.  Bridging the gap: philosophy, mathematics, and physics , 1993 .

[36]  Wojciech Słomczyński,et al.  HOW TO GENERALIZE THE LAPUNOV EXPONENT FOR QUANTUM MECHANICS , 1993 .

[37]  Leboeuf,et al.  Distribution of roots of random polynomials. , 1992, Physical review letters.

[38]  M. Hübner Explicit computation of the Bures distance for density matrices , 1992 .

[39]  K. Życzkowski,et al.  Lyapunov exponents from quantum dynamics , 1992 .

[40]  J. Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[41]  F. Haake Quantum signatures of chaos , 1991 .

[42]  K. Jones Entropy of random quantum states , 1990 .

[43]  D. Foster Exact evaluation of the collapse phase boundary for two-dimensional directed polymers , 1990 .

[44]  R. Gilmore,et al.  Coherent states: Theory and some Applications , 1990 .

[45]  A. Voros,et al.  Chaos-revealing multiplicative representation of quantum eigenstates , 1990 .

[46]  M. Hillery,et al.  Total noise and nonclassical states. , 1989, Physical review. A, General physics.

[47]  M. Kus,et al.  Universality of eigenvector statistics of kicked tops of different symmetries , 1988 .

[48]  C. T. Lee Wehrl's entropy of spin states and Lieb's conjecture , 1988 .

[49]  M. Hillery,et al.  Nonclassical distance in quantum optics. , 1987, Physical review. A, General physics.

[50]  A. Perelomov Generalized Coherent States and Their Applications , 1986 .

[51]  S. Rachev The Monge–Kantorovich Mass Transference Problem and Its Stochastic Applications , 1985 .

[52]  W. Zurek Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse? , 1981 .

[53]  W. Wootters Statistical distance and Hilbert space , 1981 .

[54]  Nesa L'abbe Wu,et al.  Linear programming and extensions , 1981 .

[55]  W. Thirring Quantenmechanik grosser systeme , 1980 .

[56]  A. Wehrl On the relation between classical and quantum-mechanical entropy , 1979 .

[57]  E. Lieb Proof of an entropy conjecture of Wehrl , 1978 .

[58]  W. Thirring Lehrbuch der Mathematischen Physik , 1977 .

[59]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[60]  H. Bacry Orbits of the rotation group on spin states , 1974 .

[61]  F. Arecchi,et al.  Atomic coherent states in quantum optics , 1972 .

[62]  J. M. Radcliffe Some properties of coherent spin states , 1971 .

[63]  D. Bures An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .

[64]  L. V. Kantorovich,et al.  Mathematical Methods of Organizing and Planning Production , 1960 .

[65]  Ettore Majorana Atomi orientati in campo magnetico variabile , 1932 .

[66]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .