UV resonant Raman scattering facility at Elettra

We present a newly developed resonant Raman scattering instrument working in the UV spectral range. This set-up, which exploits the UV synchrotron radiation source available at Elettra (Trieste, Italy), results in an innovative spectroscopic facility to be used for addressing a large array of open problems, ranging from the electronic properties of nanostructures and strongly correlated materials to biochemistry.

[1]  R. Murarka,et al.  Molecular view of water dynamics near model peptides. , 2005, The journal of physical chemistry. B.

[2]  J. Rueff,et al.  Quasiparticles at the Mott transition in V2O3: wave vector dependence and surface attenuation. , 2009, Physical review letters.

[3]  J L Lippert,et al.  Determination of the secondary structure of proteins by laser Raman spectroscopy. , 1976, Journal of the American Chemical Society.

[4]  A. M. Rao,et al.  Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes , 1997, Science.

[5]  Christopher D. Simpson,et al.  Wavelength-dependent Raman activity of D-2h symmetry polycyclic aromatic hydrocarbons in the D-band and acoustic phonon regions , 2004 .

[6]  X. G. Chen,et al.  UV resonance Raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure. , 1998, Biochemistry.

[7]  R. Dasari,et al.  Ultrasensitive chemical analysis by Raman spectroscopy. , 1999, Chemical reviews.

[8]  A. Soldatova,et al.  Protein dynamics from time resolved UV Raman spectroscopy. , 2008, Current opinion in structural biology.

[9]  Erik Bründermann,et al.  Solvation dynamics of model peptides probed by terahertz spectroscopy. Observation of the onset of collective network motions. , 2009, Journal of the American Chemical Society.

[10]  K. Furic,et al.  Raman spectroscopic study of sodium chloride water solutions , 2000 .

[11]  R. Williams,et al.  Estimation of protein secondary structure from the laser Raman amide I spectrum. , 1983, Journal of molecular biology.

[12]  Giacomo Vitarelli,et al.  Comparison of the UV-degradation chemistry of polypropylene, polyethylene, polyamide 6 and polybutylene terephthalate , 1999 .

[13]  S S Chan,et al.  Temperature-dependent ultraviolet resonance Raman spectroscopy of the premelting state of dA.dT DNA. , 1997, Biophysical journal.

[14]  Hans Kuzmany,et al.  The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films , 2004 .

[15]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[16]  John Robertson,et al.  Resonant Raman scattering in cubic and hexagonal boron nitride , 2005 .

[17]  Takashi Tanaka,et al.  Figure-8 undulator as an insertion device with linear polarization and low on-axis power density , 1995 .

[18]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[19]  K. J. Schmidt,et al.  UV Raman Spectroscopy of Oilsands-Derived Bitumen and Commercial Petroleum Products , 2002 .

[20]  K. H. Kim,et al.  Orbital ordering in LaMnO3 investigated by resonance Raman spectroscopy. , 2004, Physical review letters.

[21]  H. Kataura,et al.  Unusual high degree of unperturbed environment in the interior of single-wall carbon nanotubes. , 2003, Physical review letters.

[22]  A. Moskvin,et al.  Character of charge transfer excitons in Sr 2 CuO 2 Cl 2 , 2002 .

[23]  G. Ruocco,et al.  Structural relaxation in liquid water by inelastic UV scattering. , 2004, Physical review letters.

[24]  P. Eklund,et al.  Diameter-selective resonant Raman scattering in double-wall carbon nanotubes , 2002 .

[25]  K. Michaelian,et al.  The Raman spectrum of gaseous acetic acid at 21 °C , 1982 .

[26]  Shaolong Zhu,et al.  Investigation of 207 nm UV radiation for degradation of organic dye in water , 2007 .

[27]  Tony C. Kowalczyk,et al.  Photodegradation of azobenzene nonlinear optical chromophores: the influence of structure and environment , 2000 .