SN2014J gamma rays from the 56Ni decay chain

R. Diehl, et al., “SN2014J gamma rays from the 56Ni decay chain”, Astronomy & Astrophysics, Vol. 574, January 2015. The version of record is available online at: https://www.aanda.org/articles/aa/abs/2015/02/aa24991-14/aa24991-14.html Reproduced with Permission from Astronomy and Astrophysics, © ESO 2015.

[1]  J. Greiner,et al.  Early 56Ni decay gamma rays from SN2014J suggest an unusual explosion , 2014, Science.

[2]  W. Hillebrandt,et al.  Extensive HST ultraviolet spectra and multiwavelength observations of SN 2014J in M82 indicate reddening and circumstellar scattering by typical dust , 2014, 1405.3677.

[3]  F. Lebrun,et al.  Cobalt-56 γ-ray emission lines from the type Ia supernova 2014J , 2014, Nature.

[4]  S. B. Cenko,et al.  THE RISE OF SN 2014J IN THE NEARBY GALAXY M82 , 2014 .

[5]  A. Burrows,et al.  EXPECTATIONS FOR THE HARD X-RAY CONTINUUM AND GAMMA-RAY LINE FLUXES FROM THE TYPE IA SUPERNOVA SN 2014J IN M82 , 2014, 1402.4806.

[6]  E. Ofek,et al.  The rise of SN2014J in the nearby galaxy M82 , 2014, 1402.0849.

[7]  Wei Zheng,et al.  ESTIMATING THE FIRST-LIGHT TIME OF THE TYPE IA SUPERNOVA 2014J IN M82 , 2014, 1401.7968.

[8]  S. Blondin,et al.  Constraints on the explosion mechanism and progenitors of Type Ia supernovae , 2013, 1310.7747.

[9]  S. Blondin,et al.  Critical ingredients of Type Ia supernova radiative-transfer modelling , 2013, 1308.6352.

[10]  W. Hillebrandt,et al.  Towards an understanding of Type Ia supernovae from a synthesis of theory and observations , 2013, 1302.6420.

[11]  J. Sollerman,et al.  An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae , 2010, Nature.

[12]  J. Sollerman,et al.  NEBULAR SPECTRA AND EXPLOSION ASYMMETRY OF TYPE Ia SUPERNOVAE , 2009, 0911.5484.

[13]  E. Bravo,et al.  Detection and interpretation of γ-ray emission from SNIa , 2008 .

[14]  P. Mazzali,et al.  A Common Explosion Mechanism for Type Ia Supernovae , 2007, Science.

[15]  M. Stritzinger,et al.  Constraints on the progenitor systems of type Ia supernovae , 2005, astro-ph/0506415.

[16]  Chris L. Fryer,et al.  Unified One-Dimensional Simulations of Gamma-Ray Line Emission from Type Ia Supernovae , 2004, astro-ph/0406173.

[17]  Georg Weidenspointner,et al.  SPI: The spectrometer aboard INTEGRAL , 2003 .

[18]  M. Livio,et al.  Supernovae and gamma-ray bursts : the greatest explosions since the big bang : proceedings of the Space Telescope Science Institute Symposium held in Baltimore, Maryland, May 3-6, 1999 , 2001 .

[19]  W. Hillebrandt,et al.  Type IA Supernova Explosion Models , 2000, astro-ph/0006305.

[20]  J. Craig Wheeler,et al.  Hard X-Rays and Gamma Rays from Type Ia Supernovae , 1997, astro-ph/9709033.

[21]  C. Winkler The INTEGRAL mission , 1995 .

[22]  W. Arnett,et al.  Explosions of Sub--Chandrasekhar Mass White Dwarfs in Two Dimensions , 1995 .

[23]  S. Woosley,et al.  Sub-Chandrasekhar mass models for Type IA supernovae , 1994 .

[24]  K. Nomoto,et al.  Accreting white dwarf models for type I supernovae. III. Carbon deflagration supernovae , 1984 .

[25]  E. Kuulkers INTEGRAL Target of Opportunity observations of the type Ia SN2014J in M82 , 2014 .

[26]  S. Fossey,et al.  Supernova 2014J in M82 = Psn J09554214+6940260 , 2014 .

[27]  M. Kasliwal,et al.  Classification of Supernova in M82 as a young, reddened Type Ia Supernova , 2014 .

[28]  J. José,et al.  Binary Systems and Their Nuclear Explosions , 2011 .