Contrast Agent Bolus Dispersion in a Realistic Coronary Artery Geometry: Influence of Outlet Boundary Conditions

[1]  E. Nagel,et al.  Variability in quantitative cardiac magnetic resonance perfusion analysis. , 2013, Journal of thoracic disease.

[2]  Stefan Weber,et al.  Computational Fluid Dynamics Simulations of Contrast Agent Bolus Dispersion in a Coronary Bifurcation: Impact on MRI-Based Quantification of Myocardial Perfusion , 2013, Comput. Math. Methods Medicine.

[3]  Mark D. Huffman,et al.  Heart disease and stroke statistics--2013 update: a report from the American Heart Association. , 2013, Circulation.

[4]  Will Cousins,et al.  Boundary conditions for hemodynamics: The structured tree revisited , 2012, J. Comput. Phys..

[5]  N. Smith,et al.  The Multi-Scale Modelling of Coronary Blood Flow , 2012, Annals of Biomedical Engineering.

[6]  P. Kellman,et al.  A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: microsphere validation in dogs and feasibility study in humans. , 2012, JACC. Cardiovascular imaging.

[7]  S. Weber,et al.  Quantitative myocardial perfusion magnetic resonance imaging: the impact of pulsatile flow on contrast agent bolus dispersion , 2011, Physics in medicine and biology.

[8]  Jingfeng Jiang,et al.  Comparison of blood velocity measurements between ultrasound Doppler and accelerated phase-contrast MR angiography in small arteries with disturbed flow , 2011, Physics in medicine and biology.

[9]  E. Wellnhofer,et al.  Flow simulation studies in coronary arteries--impact of side-branches. , 2010, Atherosclerosis.

[10]  M. Lukáčová-Medvid’ová,et al.  Numerical study of shear-dependent non-Newtonian fluids in compliant vessels , 2010, Comput. Math. Appl..

[11]  Christoph Groden,et al.  Application of micro-CT in small animal imaging. , 2010, Methods.

[12]  George Em Karniadakis,et al.  Wall Shear Stress and Pressure Distribution on Aneurysms and Infundibulae in the Posterior Communicating Artery Bifurcation , 2009, Annals of Biomedical Engineering.

[13]  A Karac,et al.  Validation of a fluid-structure interaction numerical model for predicting flow transients in arteries. , 2009, Journal of biomechanics.

[14]  K. Kreitner,et al.  Quantitative contrast-enhanced myocardial perfusion magnetic resonance imaging: simulation of bolus dispersion in constricted vessels. , 2009, Medical physics.

[15]  Ting-Yim Lee,et al.  Theoretic Basis and Technical Implementations of CT Perfusion in Acute Ischemic Stroke, Part 2: Technical Implementations , 2009, American Journal of Neuroradiology.

[16]  Berend E. Westerhof,et al.  The arterial Windkessel , 2009, Medical & Biological Engineering & Computing.

[17]  M. Gavaises,et al.  Simulation of cardiac motion on non-Newtonian, pulsating flow development in the human left anterior descending coronary artery , 2008, Physics in medicine and biology.

[18]  Stefan Weber,et al.  Quantitative myocardial perfusion imaging using different autocalibrated parallel acquisition techniques , 2008, Journal of magnetic resonance imaging : JMRI.

[19]  K. Kofoed,et al.  Quantification of MRI measured myocardial perfusion reserve in healthy humans: A comparison with positron emission tomography , 2008, Journal of magnetic resonance imaging : JMRI.

[20]  M Mischi,et al.  On the physical and stochastic representation of an indicator dilution curve as a gamma variate , 2008, Physiological measurement.

[21]  Charles A. Taylor,et al.  Morphometry-Based Impedance Boundary Conditions for Patient-Specific Modeling of Blood Flow in Pulmonary Arteries , 2007, Annals of Biomedical Engineering.

[22]  M. K. Kolandavel,et al.  The Effects of Time Varying Curvature on Species Transport in Coronary Arteries , 2006, Annals of Biomedical Engineering.

[23]  Charles A. Taylor,et al.  Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries , 2006 .

[24]  Geert J. Streekstra,et al.  Visualisation of intramural coronary vasculature by an imaging cryomicrotome suggests compartmentalisation of myocardial perfusion areas , 2005, Medical and Biological Engineering and Computing.

[25]  Pierce Grace,et al.  Effects of flat, parabolic and realistic steady flow inlet profiles on idealised and realistic stent graft fits through Abdominal Aortic Aneurysms (AAA). , 2006, Medical engineering & physics.

[26]  R. Mohiaddin,et al.  Applications of phase-contrast flow and velocity imaging in cardiovascular MRI , 2005, European Radiology.

[27]  Ghassan S Kassab,et al.  Biaxial elastic material properties of porcine coronary media and adventitia. , 2005, American journal of physiology. Heart and circulatory physiology.

[28]  S. Petersen,et al.  Quantification of resting myocardial blood flow in a pig model of acute ischemia based on first‐pass MRI , 2005, Magnetic resonance in medicine.

[29]  P. J. Prendergast,et al.  Elastic Behavior of Porcine Coronary Artery Tissue Under Uniaxial and Equibiaxial Tension , 2004, Annals of Biomedical Engineering.

[30]  Sharon-Lise T. Normand,et al.  Coronary Artery Spatial Distribution of Acute Myocardial Infarction Occlusions , 2004, Circulation.

[31]  O. Simonetti,et al.  Multislice first‐pass myocardial perfusion imaging: Comparison of saturation recovery (SR)‐TrueFISP‐two‐dimensional (2D) and SR‐TurboFLASH‐2D pulse sequences , 2004, Journal of magnetic resonance imaging : JMRI.

[32]  Michael Jerosch-Herold,et al.  Direct comparison of an intravascular and an extracellular contrast agent for quantification of myocardial perfusion , 1999, The International Journal of Cardiac Imaging.

[33]  Alfio Quarteroni,et al.  Mathematical Modelling and Numerical Simulation of the Cardiovascular System , 2004 .

[34]  A. Tannenbaum,et al.  Flow Patterns and Wall Shear Stress Distributions at Atherosclerotic-Prone Sites in a Human Left Coronary Artery - An Exploration Using Combined Methods of CT and Computational Fluid Dynamics , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[35]  Steven H Frankel,et al.  Numerical modeling of pulsatile turbulent flow in stenotic vessels. , 2003, Journal of biomechanical engineering.

[36]  Fernando Calamante,et al.  Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics , 2003, NeuroImage.

[37]  R. Bouzerar,et al.  Blood flow patterns in an anatomically realistic coronary vessel: influence of three different reconstruction methods. , 2002, Journal of biomechanics.

[38]  D. Saloner,et al.  Numerical analysis of flow through a severely stenotic carotid artery bifurcation. , 2002, Journal of biomechanical engineering.

[39]  J Laudan,et al.  Three-Dimensional Pulsatile Flow Simulation before and after Endovascular Coil Embolization of a Terminal Cerebral Aneurysm , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[40]  A E Stillman,et al.  Magnetic resonance first‐pass myocardial perfusion imaging: Clinical validation and future applications , 1999, Journal of magnetic resonance imaging : JMRI.

[41]  F. Kajiya,et al.  Role of NO and [Formula: see text] channels in adenosine-induced vasodilation on in vivo canine subendocardial arterioles. , 1999, American journal of physiology. Heart and circulatory physiology.

[42]  A. Gosman,et al.  High resolution NVD differencing scheme for arbitrarily unstructured meshes , 1999 .

[43]  van de Fn Frans Vosse,et al.  The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90° curved tube , 1999 .

[44]  F. Kajiya,et al.  Role of NO and K(+)(ATP) channels in adenosine-induced vasodilation on in vivo canine subendocardial arterioles. , 1999, The American journal of physiology.

[45]  M. Olufsen Structured tree outflow condition for blood flow in larger systemic arteries. , 1999, The American journal of physiology.

[46]  F N van de Vosse,et al.  The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 degrees curved tube. , 1999, Journal of biomechanics.

[47]  T Akasaka,et al.  Noninvasive assessment of significant left anterior descending coronary artery stenosis by coronary flow velocity reserve with transthoracic color Doppler echocardiography. , 1998, Circulation.

[48]  W. Nichols,et al.  McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles , 1998 .

[49]  J. Bassingthwaighte,et al.  Modeling regional myocardial flows from residue functions of an intravascular indicator. , 1996, The American journal of physiology.

[50]  E. Atalar,et al.  Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. , 1995, Circulation.

[51]  William Wijns,et al.  Relation Between Myocardial Blood Flow and the Severity of Coronary-Artery Stenosis , 1995 .

[52]  P. Camici,et al.  Relation between myocardial blood flow and the severity of coronary-artery stenosis. , 1994, The New England journal of medicine.

[53]  D. Steinman,et al.  Simulation of non-Newtonian blood flow in an end-to-side anastomosis. , 1994, Biorheology.

[54]  A. Pries,et al.  Blood viscosity in tube flow: dependence on diameter and hematocrit. , 1992, The American journal of physiology.