Toward a More Holistic Framework for Solvent Selection

An interactive tool has been developed to facilitate solvent selection, allowing consideration of chemical functionality, physical properties, regulatory concerns, and safety/health/environmental (SHE) impact. Appropriate solvents can be identified prior to screening experiments, and less desirable solvents can be replaced in established processes. Once a shortlist has been identified, the data can define experimental programs or else be exported to a molecular properties prediction tool to assess suitability through, e.g., solubility and partitioning.

[1]  Michael H. Abraham,et al.  Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes , 2010 .

[2]  Dieter Martin,et al.  Anwendung der Faktoranalyse in der organischen Chemie , 2010 .

[3]  M. T. Rogers,et al.  KETO–ENOL TAUTOMERISM IN β-DICARBONYLS STUDIED BY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY: II. SOLVENT EFFECTS ON PROTON CHEMICAL SHIFTS AND ON EQUILIBRIUM CONSTANTS , 1965 .

[4]  Xiangping Zhang,et al.  Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach , 2015 .

[5]  A. J. Hunt,et al.  Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents. , 2014, Chemical communications.

[6]  John D. Hayler,et al.  A survey of solvent selection guides , 2014 .

[7]  Tom Welton,et al.  Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. , 1999, Chemical reviews.

[8]  H. Suhr Lösungsmitteleinflüsse bei nucleophilen aromatischen Substitutionen , 1964 .

[9]  W. L. Noble,et al.  Solvation as a Factor in the Alkylation of Ambident Anions: The Importance of the Hydrogen Bonding Capacity of the Solvent , 1963 .

[10]  Mark C. Wenlock,et al.  How Experimental Errors Influence Drug Metabolism and Pharmacokinetic QSAR/QSPR Models , 2015, J. Chem. Inf. Model..

[11]  Richard D. Cramer BC(DEF) parameters. 2. An empirical structure-based scheme for the prediction of some physical properties , 1980 .

[12]  F. Gallissot,et al.  Developmental toxic effects of N‐ethyl‐2‐pyrrolidone administered orally to rats , 2007, Journal of applied toxicology : JAT.

[13]  Jean Martínez,et al.  Poly(ethylene glycol)-based ionic liquids: properties and uses as alternative solvents in organic synthesis and catalysis. , 2014, ChemSusChem.

[14]  N. Redman-Furey,et al.  Statistical cluster analysis of pharmaceutical solvents. , 2007, International journal of pharmaceutics.

[15]  Eberhard Guntrum,et al.  Sanofi’s Solvent Selection Guide: A Step Toward More Sustainable Processes , 2013 .

[16]  Yilin Wang,et al.  QSPR Treatment of Solvent Scales , 1999, J. Chem. Inf. Comput. Sci..

[17]  H. Suhr Lösungsmitteleinflüsse und Basenkatalyse bei der nucleophilen aromatischen Substitution , 1963 .

[18]  T. Lundstedt,et al.  Screening of suitable solvents in organic synthesis. Strategies for solvent selection , 1985 .

[19]  Y. Marcus The effectivity of solvents as electron pair donors , 1984 .

[20]  R. Carlson,et al.  Exploring organic synthetic experimental procedures , 1993 .

[21]  J. Abboud,et al.  Critical compilation of scales of solvent parameters. Part I. Pure, non-hydrogen bond donor solvents , 1999 .

[22]  A. J. Parker,et al.  Solvation of ions. XVIII. Protic-dipolar aprotic solvent effects on the free energies, enthalpies, and entropies of activation of an SNAr reaction , 1973 .

[23]  Michel Chanon,et al.  Approach to a general classification of solvents using a multivariate statistical treatment of quantitative solvent parameters , 1985 .

[24]  R. Zalewski,et al.  Non‐hierarchical classification of organic solvents using characteristic vector analysis of physical and empirical solvent parameters , 1989 .

[25]  Multivariate Klassifikation von Lösungsmitteln mit Hilfe von Clusterdisplays , 2010 .

[26]  M. Abraham,et al.  The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography , 1987 .

[27]  M. T. Rogers,et al.  Keto-Enol Tautomerism in β-Dicarbonyls Studied by Nuclear Magnetic Resonance Spectroscopy.1 I. Proton Chemical Shifts and Equilibrium Constants of Pure Compounds , 1964 .

[28]  Concepción Jiménez-González,et al.  Expanding GSK's solvent selection guide ― embedding sustainability into solvent selection starting at medicinal chemistry , 2011 .

[29]  E. Fargin,et al.  Chemometrics of solvent basicity: multivariate analysis of the basicity scales relevant to nonprotogenic solvents , 1987 .

[30]  John D. Hayler,et al.  CHEM21 selection guide of classical- and less classical-solvents , 2016 .

[31]  Peter J. Dunn,et al.  Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation , 2008 .

[32]  M. Chastrette,et al.  Statistical study of solvent effects—II: Analysis of some empirical parameters of solvent polarity , 1982 .

[33]  Concepción Jiménez-González,et al.  Using the Right Green Yardstick: Why Process Mass Intensity Is Used in the Pharmaceutical Industry To Drive More Sustainable Processes , 2011 .

[34]  N. Kornblum,et al.  Solvation as a Factor in the Alkylation of Ambident Anions: The Importance of the Dielectric Factor , 1963 .

[35]  W. L. Noble,et al.  CHEMICAL EFFECTS ARISING FROM SELECTIVE SOLVATION: SELECTIVE SOLVATION AS A FACTOR IN THE ALKYLATION OF AMBIDENT ANIONS , 1960 .

[36]  O. Pytela,et al.  Solvent effect - Classification of parameters describing influence of solvents , 1983 .

[37]  M. Chastrette Etude statistique des effets de solvant—I : Principes et applications a l'evaluation des parametres de solvant et a la classification , 1979 .

[38]  A. Parker The effects of solvation on the properties of anions in dipolar aprotic solvents , 1962 .