Biips: Software for Bayesian Inference with Interacting Particle Systems

Biips is a software platform for automatic Bayesian inference with interacting particle systems. Biips allows users to define their statistical model in the probabilistic programming BUGS language, as well as to add custom functions or samplers within this language. Then it runs sequential Monte Carlo based algorithms (particle filters, particle independent Metropolis-Hastings, particle marginal Metropolis-Hastings) in a black-box manner so that to approximate the posterior distribution of interest as well as the marginal likelihood. The software is developed in C++ with interfaces with the softwares R, Matlab and Octave.

[1]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[2]  Walter R. Gilks,et al.  A Language and Program for Complex Bayesian Modelling , 1994 .

[3]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[4]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[5]  O. Cappé,et al.  Markov Chain Monte Carlo: 10 Years and Still Running! , 2000 .

[6]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[7]  Marc Schoenauer,et al.  Take It EASEA , 2000, PPSN.

[8]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[9]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[10]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[11]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[12]  Simon J. Godsill,et al.  Particle methods for Bayesian modeling and enhancement of speech signals , 2002, IEEE Trans. Speech Audio Process..

[13]  Peter Green,et al.  Highly Structured Stochastic Systems , 2003 .

[14]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .

[15]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[16]  Sumeetpal S. Singh,et al.  Sequential monte carlo implementation of the phd filter for multi-target tracking , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[17]  El-Ghazali Talbi,et al.  ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics , 2004, J. Heuristics.

[18]  Pierre Del Moral,et al.  Feynman-Kac formulae , 2004 .

[19]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[20]  Paul Fearnhead,et al.  Particle filters for mixture models with an unknown number of components , 2004, Stat. Comput..

[21]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[22]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[23]  Darren J. Wilkinson,et al.  Bayesian Sequential Inference for Stochastic Kinetic Biochemical Network Models , 2006, J. Comput. Biol..

[24]  Carlos M. Carvalho,et al.  Simulation-based sequential analysis of Markov switching stochastic volatility models , 2007, Comput. Stat. Data Anal..

[25]  P. Fearnhead,et al.  On‐line inference for multiple changepoint problems , 2007 .

[26]  Manuel Davy,et al.  Particle Filtering for Multisensor Data Fusion With Switching Observation Models: Application to Land Vehicle Positioning , 2007, IEEE Transactions on Signal Processing.

[27]  Stephen T. Buckland,et al.  Embedding Population Dynamics Models in Inference , 2007, 0708.3796.

[28]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[29]  A. Flahault,et al.  Estimating the impact of school closure on influenza transmission from Sentinel data , 2008, Nature.

[30]  Darren J. Wilkinson,et al.  Bayesian inference for a discretely observed stochastic kinetic model , 2008, Stat. Comput..

[31]  Arnaud Doucet,et al.  Bayesian Inference for Linear Dynamic Models With Dirichlet Process Mixtures , 2007, IEEE Transactions on Signal Processing.

[32]  Adam M. Johansen,et al.  SMCTC : sequential Monte Carlo in C++ , 2009 .

[33]  Sophie Donnet,et al.  EM algorithm coupled with particle filter for maximum likelihood parameter estimation of stochastic differential mixed-effects models , 2010 .

[34]  G. Peters,et al.  Ecological non-linear state space model selection via adaptive particle Markov chain Monte Carlo (AdPMCMC) , 2010, 1005.2238.

[35]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[36]  Arnaud Doucet,et al.  On the Utility of Graphics Cards to Perform Massively Parallel Simulation of Advanced Monte Carlo Methods , 2009, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[37]  N. Shephard,et al.  BAYESIAN INFERENCE BASED ONLY ON SIMULATED LIKELIHOOD: PARTICLE FILTER ANALYSIS OF DYNAMIC ECONOMIC MODELS , 2011, Econometric Theory.

[38]  Dirk Eddelbuettel,et al.  Rcpp: Seamless R and C++ Integration , 2011 .

[39]  Darren J Wilkinson,et al.  Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo , 2011, Interface Focus.

[40]  Raphael Gottardo,et al.  On-line changepoint detection and parameter estimation with application to genomic data , 2012, Stat. Comput..

[41]  Martyn Plummer,et al.  JAGS Version 3.3.0 user manual , 2012 .

[42]  Michael I. Jordan,et al.  Phylogenetic Inference via Sequential Monte Carlo , 2012, Systematic biology.

[43]  Joseph Dureau,et al.  Capturing the time-varying drivers of an epidemic using stochastic dynamical systems. , 2012, Biostatistics.

[44]  Yan Zhou vSMC: Parallel Sequential Monte Carlo in C++ , 2013, ArXiv.

[45]  Dirk Eddelbuettel,et al.  Seamless R and C++ Integration with Rcpp , 2013 .

[46]  Han Lin Shang,et al.  The BUGS book: a practical introduction to Bayesian analysis , 2013 .

[47]  Pierre Del Moral,et al.  Mean Field Simulation for Monte Carlo Integration , 2013 .

[48]  Andrew Golightly,et al.  Simulation of stochastic kinetic models. , 2013, Methods in molecular biology.

[49]  Lawrence M. Murray Bayesian State-Space Modelling on High-Performance Hardware Using LibBi , 2013, 1306.3277.

[50]  Pierre Del Moral,et al.  An Introduction to Stochastic Particle Integration Methods: With Applications to Risk and Insurance , 2012, 1210.3851.

[51]  Randal Douc,et al.  Nonlinear Time Series: Theory, Methods and Applications with R Examples , 2014 .

[52]  Frank D. Wood,et al.  A New Approach to Probabilistic Programming Inference , 2014, AISTATS.

[53]  Yura N. Perov,et al.  Venture: a higher-order probabilistic programming platform with programmable inference , 2014, ArXiv.

[54]  Fredrik Lindsten,et al.  Sequential Monte Carlo for Graphical Models , 2014, NIPS.

[55]  Eric Moulines,et al.  On parallel implementation of sequential Monte Carlo methods: the island particle model , 2013, Stat. Comput..