Real-time simulation and visualization of robotic belt grinding processes

Real time simulation and visualization are important for robot programmers to verify and optimize the path planning for the robotic belt grinding process. A new free-form surface representation based on discrete surfel element is developed to facilitate the system implementation, which exploits the advantage of the new development of point-based rendering technology in computer graphics. A local process model is integrated to calculate the material removal rate by considering the local geometry information and non-uniform force distribution. The final surface grinding error is easy to be assessed and visualized for quality evaluation. The experiments show that the simulation error is below 15%, even for a non-uniform contact under stable cutting conditions.

[1]  Markus H. Gross,et al.  Shape modeling with point-sampled geometry , 2003, ACM Trans. Graph..

[2]  Marc Levoy,et al.  The Use of Points as a Display Primitive , 2000 .

[3]  James H. Oliver,et al.  NC milling error assessment and tool path correction , 1994, SIGGRAPH.

[4]  Robert B. Jerard,et al.  Approximate methods for simulation and verification of numerically controlled machining programs , 1989, The Visual Computer.

[5]  Georg Glaeser,et al.  Efficient Volume-Generation During the Simulation of NC-Milling , 1997, VisMath.

[6]  Heinrich Müller,et al.  Online sculpting and visualization of multi-dexel volumes , 2003, SM '03.

[7]  K. K. Wang,et al.  Geometric Modeling for Swept Volume of Moving Solids , 1986, IEEE Computer Graphics and Applications.

[8]  Shiro Nonaka,et al.  A flexible quantitative method for NC machining verification using a space-division based solid model , 2005, The Visual Computer.

[9]  R. Webster,et al.  Kriging: a method of interpolation for geographical information systems , 1990, Int. J. Geogr. Inf. Sci..

[10]  Gabor T. Herman,et al.  Discrete multidimensional Jordan surfaces , 1992, CVGIP Graph. Model. Image Process..

[11]  Matthias Zwicker,et al.  Surface splatting , 2001, SIGGRAPH.

[12]  James F. Blinn,et al.  Simulation of wrinkled surfaces , 1978, SIGGRAPH.

[13]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[14]  Gerhard Hammann Modellierung des Abtragsverhaltens elastischer, robotergeführter Schleifwerkzeuge , 1998 .

[15]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[16]  H. Blum,et al.  An adaptive finite element discretisation¶for a simplified Signorini problem , 2000 .

[17]  Michael C. Doggett,et al.  Adaptive view dependent tessellation of displacement maps , 2000, Workshop on Graphics Hardware.

[18]  Takafumi Saito,et al.  NC machining with G-buffer method , 1991, SIGGRAPH.

[19]  Thomas R. Kurfess,et al.  Production of High Quality Parts by the Process of Grinding in Manufacturing Systems , 2000 .

[20]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.