The Genome and Transcriptome of Haemonchus Contortus, a Key Model Parasite for Drug and Vaccine Discovery Genome Biology the Genome and Transcriptome of Haemonchus Contortus, a Key Model Parasite for Drug and Vaccine Discovery

BackgroundThe small ruminant parasite Haemonchus contortus is the most widely used parasitic nematode in drug discovery, vaccine development and anthelmintic resistance research. Its remarkable propensity to develop resistance threatens the viability of the sheep industry in many regions of the world and provides a cautionary example of the effect of mass drug administration to control parasitic nematodes. Its phylogenetic position makes it particularly well placed for comparison with the free-living nematode Caenorhabditis elegans and the most economically important parasites of livestock and humans.ResultsHere we report the detailed analysis of a draft genome assembly and extensive transcriptomic dataset for H. contortus. This represents the first genome to be published for a strongylid nematode and the most extensive transcriptomic dataset for any parasitic nematode reported to date. We show a general pattern of conservation of genome structure and gene content between H. contortus and C. elegans, but also a dramatic expansion of important parasite gene families. We identify genes involved in parasite-specific pathways such as blood feeding, neurological function, and drug metabolism. In particular, we describe complete gene repertoires for known drug target families, providing the most comprehensive understanding yet of the action of several important anthelmintics. Also, we identify a set of genes enriched in the parasitic stages of the lifecycle and the parasite gut that provide a rich source of vaccine and drug target candidates.ConclusionsThe H. contortus genome and transcriptome provide an essential platform for postgenomic research in this and other important strongylid parasites.

[1]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[2]  C. Larminie,et al.  Isolation and characterization of four developmentally regulated cathepsin B-like cysteine protease genes from the nematode Caenorhabditis elegans. , 1996, DNA and cell biology.

[3]  A. Ivens,et al.  The Transcriptional Response of Caenorhabditis elegans to Ivermectin Exposure Identifies Novel Genes Involved in the Response to Reduced Food Intake , 2012, PloS one.

[4]  R. C. Leite,et al.  Genetic diversity patterns of Haemonchus placei and Haemonchus contortus populations isolated from domestic ruminants in Brazil. , 2012, International journal for parasitology.

[5]  J. Dent,et al.  Haemonchus contortus: HcGluCla expressed in Xenopus oocytes forms a glutamate-gated ion channel that is activated by ibotenate and the antiparasitic drug ivermectin. , 2003, Molecular and biochemical parasitology.

[6]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[7]  J. Freedman,et al.  Aspartic Proteases from the Nematode Caenorhabditis elegans , 2000, The Journal of Biological Chemistry.

[8]  Lewis C Cantley,et al.  A Multi-enzyme Cascade of Hemoglobin Proteolysis in the Intestine of Blood-feeding Hookworms* , 2004, Journal of Biological Chemistry.

[9]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[10]  R. Lints,et al.  A Cholinergic-Regulated Circuit Coordinates the Maintenance and Bi-Stable States of a Sensory-Motor Behavior during Caenorhabditis elegans Male Copulation , 2011, PLoS genetics.

[11]  J. Gilleard Understanding anthelmintic resistance: the need for genomics and genetics. , 2006, International journal for parasitology.

[12]  A. Heck,et al.  Identification of Secreted Cysteine Proteases from the Parasitic Nematode Haemonchus contortus Detected by Biotinylated Inhibitors , 2006, Infection and Immunity.

[13]  F. Jackson,et al.  Microsatellite analysis reveals marked genetic differentiation between Haemonchus contortus laboratory isolates and provides a rapid system of genetic fingerprinting. , 2008, International journal for parasitology.

[14]  A. Rehman,et al.  A tissue specific approach for analysis of membrane and secreted protein antigens from Haemonchus contortus gut and its application to diverse nematode species. , 1998, Molecular and biochemical parasitology.

[15]  D. Guiliano,et al.  Conservation of long-range synteny and microsynteny between the genomes of two distantly related nematodes , 2002, Genome Biology.

[16]  J. Bessereau,et al.  Functional reconstitution of Haemonchus contortus acetylcholine receptors in Xenopus oocytes provides mechanistic insights into levamisole resistance , 2011, British journal of pharmacology.

[17]  R. Beech,et al.  Genetic diversity of levamisole receptor subunits in parasitic nematode species and abbreviated transcripts associated with resistance , 2010, Pharmacogenetics and genomics.

[18]  S. Williamson,et al.  Candidate anthelmintic resistance-associated gene expression and sequence polymorphisms in a triple-resistant field isolate of Haemonchus contortus. , 2011, Molecular and biochemical parasitology.

[19]  Ying Huang,et al.  EFICAz2: enzyme function inference by a combined approach enhanced by machine learning , 2009, BMC Bioinformatics.

[20]  E. Munn,et al.  Purification and evaluation of the integral membrane protein H11 as a protective antigen against Haemonchus contortus. , 1993, International journal for parasitology.

[21]  Andrew K. Jones,et al.  The nicotinic acetylcholine receptor gene family of the nematode Caenorhabditis elegans: an update on nomenclature , 2007, Invertebrate Neuroscience.

[22]  N. Sargison Development of genetic crossing methods to identify genes associated with macrocyclic lactone resistance in the sheep nematode parasite, Haemonchus contortus. , 2009 .

[23]  T. Lindblom,et al.  Xenobiotic detoxification in the nematode Caenorhabditis elegans. , 2006, Journal of experimental zoology. Part A, Comparative experimental biology.

[24]  R. Cummings,et al.  Schistosoma mansoni:Characterization of an α1–3 Fucosyltransferase in Adult Parasites , 1996 .

[25]  Graziano Pesole,et al.  Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita , 2008, Nature Biotechnology.

[26]  A. Zemla,et al.  Mycobacterium tuberculosis RmlC epimerase (Rv3465): a promising drug-target structure in the rhamnose pathway. , 2004, Acta crystallographica. Section D, Biological crystallography.

[27]  Kimberly Van Auken,et al.  WormBase 2012: more genomes, more data, new website , 2011, Nucleic Acids Res..

[28]  A. Loukas,et al.  Vaccination with Recombinant Aspartic Hemoglobinase Reduces Parasite Load and Blood Loss after Hookworm Infection in Dogs , 2005, PLoS medicine.

[29]  Burkhard Morgenstern,et al.  AUGUSTUS: ab initio prediction of alternative transcripts , 2006, Nucleic Acids Res..

[30]  R. Prichard Genetic variability following selection of Haemonchus contortus with anthelmintics. , 2001, Trends in parasitology.

[31]  Varghese P. Thomas,et al.  Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism , 2008, Proceedings of the National Academy of Sciences.

[32]  R. Beech,et al.  P-glycoprotein selection in strains of Haemonchus contortus resistant to benzimidazoles. , 2008, Veterinary parasitology.

[33]  D. P. Thompson,et al.  Caenorhabditis elegans: how good a model for veterinary parasites? , 2001, Veterinary parasitology.

[34]  S. Kushwaha,et al.  Cloning, expression, purification and kinetics of trehalose-6-phosphate phosphatase of filarial parasite Brugia malayi. , 2011, Acta tropica.

[35]  Kiesel Gk,et al.  Measurements of blood loss caused by Haemonchus contortus infection in sheep. , 1962 .

[36]  Keith Bradnam,et al.  CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..

[37]  D. Chandler,et al.  Synergism of rotenone by piperonyl butoxide in Haemonchus contortus and Trichostrongylus colubriformis in vitro: potential for drug-synergism through inhibition of nematode oxidative detoxification pathways. , 2006, Veterinary parasitology.

[38]  A. Kotze,et al.  Cytochrome P450 monooxygenase activity in Haemonchus contortus (Nematoda). , 1997, International journal for parasitology.

[39]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[40]  G. Saunders,et al.  Characterization and comparative analysis of the complete Haemonchus contortus β-tubulin gene family and implications for benzimidazole resistance in strongylid nematodes. , 2013, International journal for parasitology.

[41]  Makedonka Mitreva,et al.  Intestinal Transcriptomes of Nematodes: Comparison of the Parasites Ascaris suum and Haemonchus contortus with the Free-living Caenorhabditis elegans , 2008, PLoS neglected tropical diseases.

[42]  A. Vidyashankar,et al.  An inconvenient truth: global worming and anthelmintic resistance. , 2012, Veterinary parasitology.

[43]  V. Reynolds,et al.  Cloning and sequence comparisons of four distinct cysteine proteases expressed by Haemonchus contortus adult worms. , 1992, Molecular and biochemical parasitology.

[44]  L. Hillier,et al.  A global analysis of C. elegans trans-splicing. , 2011, Genome research.

[45]  Jonathan E. Allen,et al.  Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments , 2007, Genome Biology.

[46]  Joshua M. Stuart,et al.  Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans , 2002, Nature.

[47]  D. Morrison,et al.  Global patterns reveal strong population structure in Haemonchus contortus, a nematode parasite of domesticated ruminants. , 2006, International journal for parasitology.

[48]  G. Kiesel,et al.  Measurements of blood loss caused by Haemonchus contortus infection in sheep. , 1962, American journal of veterinary research.

[49]  A. Loukas,et al.  Vaccines against blood-feeding nematodes of humans and livestock , 2006, Parasitology.

[50]  E. Hoberg,et al.  PHYLOGENY FOR SPECIES OF HAEMONCHUS (NEMATODA: TRICHOSTRONGYLOIDEA): CONSIDERATIONS OF THEIR EVOLUTIONARY HISTORY AND GLOBAL BIOGEOGRAPHY AMONG CAMELIDAE AND PECORA (ARTIODACTYLA) , 2004, The Journal of parasitology.

[51]  A. Antebi,et al.  Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues , 2004, Development.

[52]  I. Putrenko,et al.  A Family of Acetylcholine-gated Chloride Channel Subunits in Caenorhabditis elegans* , 2005, Journal of Biological Chemistry.

[53]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[54]  P. Skuce,et al.  Gene expression changes in a P-glycoprotein (Tci-pgp-9) putatively associated with ivermectin resistance in Teladorsagia circumcincta. , 2011, International journal for parasitology.

[55]  A. Scott,et al.  The genome of Brugia malayi - all worms are not created equal. , 2009, Parasitology international.

[56]  J. Subramaniam,et al.  Development and evaluation of an in vivo assay in Caenorhabditis elegans for screening of compounds for their effect on cytochrome P450 expression , 2008, Journal of Biosciences.

[57]  M. Roos,et al.  Microsatellites of the parasitic nematode Haemonchus contortus: polymorphism and linkage with a direct repeat. , 1997, Molecular and biochemical parasitology.

[58]  A. Sluder,et al.  A new class of anthelmintics effective against drug-resistant nematodes , 2008, Nature.

[59]  R. Altman,et al.  Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. , 2004, Genome research.

[60]  L. Timmons,et al.  ATP-binding cassette transporters are required for efficient RNA interference in Caenorhabditis elegans. , 2006, Molecular biology of the cell.

[61]  A. Leroi,et al.  A metabolic signature of long life in Caenorhabditis elegans , 2010, BMC Biology.

[62]  Shufeng Zhou,et al.  Association of ion-channel genotype and macrocyclic lactone sensitivity traits in Haemonchus contortus. , 2010, Molecular and biochemical parasitology.

[63]  L. Webster,et al.  Abundant variation in microsatellites of the parasitic nematode Trichostrongylus tenuis and linkage to a tandem repeat. , 2006, Molecular and biochemical parasitology.

[64]  R. Kaplan Drug resistance in nematodes of veterinary importance: a status report. , 2004, Trends in parasitology.

[65]  R. Beech,et al.  Haemonchus contortus: selection at a glutamate-gated chloride channel gene in ivermectin- and moxidectin-selected strains. , 1998, Experimental parasitology.

[66]  S. Liddell,et al.  Molecular cloning and characterization of gut-derived cysteine proteinases associated with a host protective extract from Haemonchus contortus , 1999, Parasitology.

[67]  W. Smith,et al.  Immunisation of sheep with an integral membrane glycoprotein complex of Haemonchus contortus and with its major polypeptide components. , 1996, Research in veterinary science.

[68]  R. Kaminsky,et al.  Haemonchus contortus Acetylcholine Receptors of the DEG-3 Subfamily and Their Role in Sensitivity to Monepantel , 2009, PLoS pathogens.

[69]  F. Jackson,et al.  Introgression of Ivermectin Resistance Genes into a Susceptible Haemonchus contortus Strain by Multiple Backcrossing , 2012, PLoS pathogens.

[70]  F. Jackson,et al.  Characterisation of Teladorsagia circumcincta microsatellites and their development as population genetic markers. , 2006, Molecular and biochemical parasitology.

[71]  Christoph Dieterich,et al.  The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism , 2008, Nature Genetics.

[72]  J. Bessereau,et al.  Eight genes are required for functional reconstitution of the Caenorhabditis elegans levamisole-sensitive acetylcholine receptor , 2008, Proceedings of the National Academy of Sciences.

[73]  P. Weinstein Vitamin B12 changes in Nippostrongylus brasiliensis in its free-living and parasitic habitats with biochemical implications. , 1996, The Journal of parasitology.

[74]  J. Gilleard The use of Caenorhabditis elegans in parasitic nematode research , 2004, Parasitology.

[75]  I. Gluzman,et al.  Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. , 1994, The Journal of clinical investigation.

[76]  Jonathan E. Allen,et al.  Draft Genome of the Filarial Nematode Parasite Brugia malayi , 2007, Science.

[77]  Christina M. Taylor,et al.  Using Existing Drugs as Leads for Broad Spectrum Anthelmintics Targeting Protein Kinases , 2013, PLoS pathogens.

[78]  Alejandro Sanchez-Flores,et al.  Genomic Insights into the Origin of Parasitism in the Emerging Plant Pathogen Bursaphelenchus xylophilus , 2011, PLoS pathogens.

[79]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[80]  Guo-Jing Yang,et al.  A Research Agenda for Helminth Diseases of Humans: Intervention for Control and Elimination , 2012, PLoS neglected tropical diseases.

[81]  Kuresh Youdim,et al.  Cytochrome P450 metabolism and inhibition: analysis for drug discovery. , 2009, Progress in medicinal chemistry.

[82]  W. Smith,et al.  Vaccination against Haemonchus contortus: performance of native parasite gut membrane glycoproteins in Merino lambs grazing contaminated pasture. , 2008, Veterinary parasitology.

[83]  R. Beech,et al.  Population genetics of anthelmintic resistance in parasitic nematodes , 2007, Parasitology.

[84]  L. Rudby-Martin,et al.  The epidemiology of abomasal nematodes of sheep in Sweden, with particular reference to over-winter survival strategies. , 2004, Veterinary parasitology.

[85]  A. Loukas,et al.  A family of cathepsin B cysteine proteases expressed in the gut of the human hookworm, Necator americanus. , 2008, Molecular and biochemical parasitology.

[86]  John Parkinson,et al.  DETECT - a Density Estimation Tool for Enzyme ClassificaTion and its application to Plasmodium falciparum , 2010, Bioinform..

[87]  M. Mitreva,et al.  mRNA sequences for Haemonchus contortus intestinal cathepsin B-like cysteine proteases display an extreme in abundance and diversity compared with other adult mammalian parasitic nematodes. , 2004, Molecular and biochemical parasitology.

[88]  Akiyasu C. Yoshizawa,et al.  KAAS: an automatic genome annotation and pathway reconstruction server , 2007, Environmental health perspectives.

[89]  E. Birney,et al.  EGASP: the human ENCODE Genome Annotation Assessment Project , 2006, Genome Biology.

[90]  S. Buckingham,et al.  Glutamate-Gated Chloride Channels of Haemonchus contortus Restore Drug Sensitivity to Ivermectin Resistant Caenorhabditis elegans , 2011, PloS one.

[91]  S. Newton,et al.  Progress on vaccination against Haemonchus contortus. , 1995, International journal for parasitology.

[92]  J. Dame,et al.  Host movement and the genetic structure of populations of parasitic nematodes. , 1995, Genetics.

[93]  Anna V. Protasio,et al.  Annotation of Two Large Contiguous Regions from the Haemonchus contortus Genome Using RNA-seq and Comparative Analysis with Caenorhabditis elegans , 2011, PloS one.

[94]  S. Morand,et al.  Flow cytometry for parasite nematode genome size measurement. , 2003, Molecular and biochemical parasitology.

[95]  P. Skuce,et al.  The nature and prospects for gut membrane proteins as vaccine candidates for Haemonchus contortus and other ruminant trichostrongyloids. , 2003, International journal for parasitology.

[96]  S. Hashmi,et al.  Caenorhabditis elegans and the study of gene function in parasites. , 2001, Trends in parasitology.

[97]  Mark L. Blaxter,et al.  A molecular evolutionary framework for the phylum Nematoda , 1998, Nature.

[98]  J. N. Oldham Veterinary Parasitology , 1952, Nature.

[99]  T. Mackay,et al.  Candidate genes affecting Drosophila life span identified by integrating microarray gene expression analysis and QTL mapping , 2007, Mechanisms of Ageing and Development.