A renewed model of pancreatic cancer evolution based on genomic rearrangement patterns
暂无分享,去创建一个
Gun Ho Jang | Mathieu Lemire | Dianne Chadwick | Michael A. Hollingsworth | Peter J. Campbell | John M. S. Bartlett | Christina K. Yung | Thomas J. Hudson | Jared T. Simpson | Ludmil B. Alexandrov | Tao Wang | Francisco X. Real | Yilong Li | Lincoln D. Stein | Steven Gallinger | Liran I. Shlush | John D. McPherson | Ming-Sound Tsao | Michelle Chan-Seng-Yue | Andrew M. K. Brown | Timothy Beck | Gloria M. Petersen | T. Hudson | J. McPherson | J. Simpson | P. Campbell | F. Real | J. Dick | L. Alexandrov | F. Notta | Karen Ng | M. Tsao | O. Ludkovski | M. Hollingsworth | J. Bartlett | G. Petersen | L. Heisler | C. Yung | S. Gallinger | M. Lemire | Yilong Li | T. Beck | Nicholas Buchner | R. Denroche | Gavin W. Wilson | M. Roehrl | G. Jang | Michelle A. Chan-Seng-Yue | L. Shlush | D. Chadwick | J. Johns | S. Liang | I. Lungu | Julie M. Wilson | S. Cleary | G. Zogopoulos | C. Law | A. Borgida | E. Ibrahimov | Faiyaz Notta | Ashton A. Connor | Robert E. Denroche | Sheng-Ben Liang | Jaeseung C. Kim | Ayelet Borgida | Nicholas Buchner | Sara Hafezi-Bakhtiari | John E. Dick | Lawrence Heisler | Emin Ibrahimov | Jeremy Johns | Lars G. T. Jorgensen | Calvin Law | Olga Ludkovski | Ilinca Lungu | Karen Ng | Danielle Pasternack | Lee Timms | George Zogopoulos | Sean P. Cleary | Michael H. Roehrl | Lawrence E. Heisler | Ashton A Connor | Lawrence E Heisler | Tao Wang | S. Hafezi‐Bakhtiari | Lee E. Timms | Daniel M. Pasternack | M. Chan-Seng-Yue | G. Petersen | Yilong Li
[1] Andrew Menzies,et al. Analysis of the Genetic Phylogeny of Multifocal Prostate Cancer Identifies Multiple Independent Clonal Expansions in Neoplastic and Morphologically Normal Prostate Tissue , 2015, Nature Genetics.
[2] N. Carter,et al. Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.
[3] S. Gabriel,et al. Pan-cancer patterns of somatic copy-number alteration , 2013, Nature Genetics.
[4] Umar Mahmood,et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. , 2014, Cancer cell.
[5] R. Hruban,et al. Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. , 1998, Cancer research.
[6] R. Hruban,et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. , 2000, Cancer research.
[7] Maximilian Reichert,et al. EMT and Dissemination Precede Pancreatic Tumor Formation , 2012, Cell.
[8] M. Nowak,et al. Distant Metastasis Occurs Late during the Genetic Evolution of Pancreatic Cancer , 2010, Nature.
[9] S. Tavaré,et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma , 2015, Nature Genetics.
[10] Peter J. Campbell,et al. Chromothripsis and Kataegis Induced by Telomere Crisis , 2015, Cell.
[11] Stephen A. Sastra,et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. , 2014, Cancer cell.
[12] Matthew Meyerson,et al. CHROMOTHRIPSIS FROM DNA DAMAGE IN MICRONUCLEI , 2015, Nature.
[13] Sudhir Srivastava,et al. Early Detection of Sporadic Pancreatic Cancer , 2015, Pancreas.
[14] M. Stratton,et al. High burden and pervasive positive selection of somatic mutations in normal human skin , 2015, Science.
[15] F. Real. A "catastrophic hypothesis" for pancreas cancer progression. , 2003, Gastroenterology.
[16] David M. Thomas,et al. The architecture and evolution of cancer neochromosomes. , 2014, Cancer cell.
[17] R. Hruban,et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. , 2005, Cancer cell.
[18] J. Kench,et al. Whole genomes redefine the mutational landscape of pancreatic cancer , 2015, Nature.
[19] David T. W. Jones,et al. Signatures of mutational processes in human cancer , 2013, Nature.
[20] T. Zima,et al. Early detection of sporadic pancreatic cancer: time for change. , 2017, European Journal of Gastroenterology and Hepathology.
[21] R. Gibbs,et al. Genetic alterations associated with progression from pancreatic intraepithelial neoplasia to invasive pancreatic tumor. , 2013, Gastroenterology.
[22] Andrew Menzies,et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer , 2010, Nature.
[23] C. Iacobuzio-Donahue,et al. Computational Modeling of Pancreatic Cancer Reveals Kinetics of Metastasis Suggesting Optimum Treatment Strategies , 2012, Cell.
[24] W. Schmiegel,et al. Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPC4 genes during pancreatic carcinogenesis. , 2001, The American journal of pathology.
[25] Peter J. Campbell,et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia , 2014, Nature.
[26] A. McKenna,et al. Paired Exome Analysis of Barrett’s Esophagus and Adenocarcinoma , 2015, Nature Genetics.
[27] J. Korbel,et al. Criteria for Inference of Chromothripsis in Cancer Genomes , 2013, Cell.
[28] C. Curtis,et al. A Big Bang model of human colorectal tumor growth , 2015, Nature Genetics.
[29] C. Moskaluk,et al. p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. , 1997, Cancer research.
[30] David T. W. Jones,et al. Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations , 2012, Cell.
[31] R H Hruban,et al. Progression model for pancreatic cancer. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.