Discrete Morse Theory for Computing Cellular Sheaf Cohomology

Sheaves and sheaf cohomology are powerful tools in computational topology, greatly generalizing persistent homology. We develop an algorithm for simplifying the computation of cellular sheaf cohomology via (discrete) Morse theoretic techniques. As a consequence, we derive efficient techniques for distributed computation of (ordinary) cohomology of a cell complex.

[1]  John McCleary,et al.  User's Guide to Spectral Sequences , 1985 .

[2]  Amit Patel,et al.  Categorified Reeb Graphs , 2015, Discret. Comput. Geom..

[3]  E. Batzies,et al.  Discrete Morse theory for cellular resolutions , 2002 .

[4]  Vin de Silva,et al.  Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology , 2006, Int. J. Robotics Res..

[5]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[6]  Robert Ghrist,et al.  Elementary Applied Topology , 2014 .

[7]  坂上 貴之 書評 Computational Homology , 2005 .

[8]  Sanjeevi Krishnan,et al.  Flow-Cut Dualities for Sheaves on Graphs , 2014, 1409.6712.

[9]  Afra Zomorodian,et al.  Multicore Homology , 2012 .

[10]  R. Choukri,et al.  On the sheaf theory , 2006 .

[11]  Yuliy Baryshnikov,et al.  Target Enumeration via Euler Characteristic Integrals , 2009, SIAM J. Appl. Math..

[12]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[13]  Yuliy Baryshnikov,et al.  Euler integration over definable functions , 2009, Proceedings of the National Academy of Sciences.

[14]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[15]  Marian Mrozek,et al.  Coreduction Homology Algorithm , 2009, Discret. Comput. Geom..

[16]  Vin de Silva,et al.  Persistent Cohomology and Circular Coordinates , 2009, SCG '09.

[17]  Sanjeevi Krishnan,et al.  A topological max-flow-min-cut theorem , 2013, 2013 IEEE Global Conference on Signal and Information Processing.

[18]  Graeme Segal,et al.  Classifying spaces and spectral sequences , 1968 .

[19]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[20]  Robert Ghrist,et al.  CONFIGURATION SPACES, BRAIDS, AND ROBOTICS , 2009 .

[21]  Konstantin Mischaikow,et al.  Morse Theory for Filtrations and Efficient Computation of Persistent Homology , 2013, Discret. Comput. Geom..

[22]  Afra Zomorodian,et al.  Multicore Homology via Mayer Vietoris , 2014, ArXiv.

[23]  Saugata Basu,et al.  A Complexity Theory of Constructible Functions and Sheaves , 2013, Found. Comput. Math..

[24]  J. Whitehead,et al.  Combinatorial homotopy. II , 1949 .

[25]  J. Curry Sheaves, Cosheaves and Applications , 2013, 1303.3255.

[26]  Dmitriy Morozov,et al.  Zigzag persistent homology and real-valued functions , 2009, SCG '09.

[27]  J. Graver,et al.  Graduate studies in mathematics , 1993 .

[28]  Michael Farber Topological Complexity of Motion Planning , 2003, Discret. Comput. Geom..

[29]  C. Weibel,et al.  An Introduction to Homological Algebra: References , 1960 .

[30]  Afra Zomorodian,et al.  Localized Homology , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[31]  R. Adler The Geometry of Random Fields , 2009 .

[32]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[33]  M. Vybornov,et al.  Sheaves on Triangulated Spaces and Koszul Duality , 1999 .

[34]  Konstantin Mischaikow,et al.  Chapter 9 – Conley Index , 2002 .

[35]  R. Ghrist,et al.  Euler Calculus with Applications to Signals and Sensing , 2012, 1202.0275.

[36]  GhristRobert,et al.  Discrete Morse Theory for Computing Cellular Sheaf Cohomology , 2016 .

[37]  K. Borsuk On the imbedding of systems of compacta in simplicial complexes , 1948 .

[38]  Konstantin Mischaikow,et al.  Discrete Morse Theoretic Algorithms for Computing Homology of Complexes and Maps , 2014, Found. Comput. Math..

[39]  Tamal K. Dey,et al.  Topological Persistence for Circle-Valued Maps , 2013, Discret. Comput. Geom..

[40]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[41]  C. Weibel,et al.  AN INTRODUCTION TO HOMOLOGICAL ALGEBRA , 1996 .

[42]  Konstantin Mischaikow,et al.  Conley index theory , 1995 .

[43]  Daniel E. Koditschek,et al.  Gait Transitions for Quasi-static Hexapedal Locomotion on Level Ground , 2009, ISRR.

[44]  Dmitry N. Kozlov,et al.  Discrete Morse Theory for free chain complexes , 2005, ArXiv.

[45]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[46]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[47]  P. Alexandroff,et al.  Über den allgemeinen Dimensionsbegriff und seine Beziehungen zur elementaren geometrischen Anschauung , 1928 .

[48]  Konstantin Mischaikow,et al.  A Database Schema for the Analysis of Global Dynamics of Multiparameter Systems , 2009, SIAM J. Appl. Dyn. Syst..

[49]  Manoj K. Chari On discrete Morse functions and combinatorial decompositions , 2000, Discret. Math..

[50]  Michael Robinson The Nyquist theorem for cellular sheaves , 2013 .

[51]  R. Forman Morse Theory for Cell Complexes , 1998 .

[52]  David Eppstein,et al.  Bounds on the Complexity of Halfspace Intersections when the Bounded Faces have Small Dimension , 2011, SoCG '11.

[53]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[54]  R. Ho Algebraic Topology , 2022 .

[55]  Michael Farber Collision Free Motion Planning on Graphs , 2004, WAFR.

[56]  Joseph A. Goguen,et al.  Sheaf semantics for concurrent interacting objects , 1992, Mathematical Structures in Computer Science.

[57]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[58]  P. Schapira,et al.  Tomography of Constructible Functions , 1995, AAECC.

[59]  Emil Sköldberg,et al.  Morse theory from an algebraic viewpoint , 2005 .

[60]  Pierre Schapira,et al.  Operations on constructible functions , 1991 .