Discrete Morse Theory for Computing Cellular Sheaf Cohomology
暂无分享,去创建一个
[1] John McCleary,et al. User's Guide to Spectral Sequences , 1985 .
[2] Amit Patel,et al. Categorified Reeb Graphs , 2015, Discret. Comput. Geom..
[3] E. Batzies,et al. Discrete Morse theory for cellular resolutions , 2002 .
[4] Vin de Silva,et al. Coordinate-free Coverage in Sensor Networks with Controlled Boundaries via Homology , 2006, Int. J. Robotics Res..
[5] Herbert Edelsbrunner,et al. Computational Topology - an Introduction , 2009 .
[6] Robert Ghrist,et al. Elementary Applied Topology , 2014 .
[7] 坂上 貴之. 書評 Computational Homology , 2005 .
[8] Sanjeevi Krishnan,et al. Flow-Cut Dualities for Sheaves on Graphs , 2014, 1409.6712.
[9] Afra Zomorodian,et al. Multicore Homology , 2012 .
[10] R. Choukri,et al. On the sheaf theory , 2006 .
[11] Yuliy Baryshnikov,et al. Target Enumeration via Euler Characteristic Integrals , 2009, SIAM J. Appl. Math..
[12] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[13] Yuliy Baryshnikov,et al. Euler integration over definable functions , 2009, Proceedings of the National Academy of Sciences.
[14] R. Adler,et al. The Geometry of Random Fields , 1982 .
[15] Marian Mrozek,et al. Coreduction Homology Algorithm , 2009, Discret. Comput. Geom..
[16] Vin de Silva,et al. Persistent Cohomology and Circular Coordinates , 2009, SCG '09.
[17] Sanjeevi Krishnan,et al. A topological max-flow-min-cut theorem , 2013, 2013 IEEE Global Conference on Signal and Information Processing.
[18] Graeme Segal,et al. Classifying spaces and spectral sequences , 1968 .
[19] R. Adler,et al. Random Fields and Geometry , 2007 .
[20] Robert Ghrist,et al. CONFIGURATION SPACES, BRAIDS, AND ROBOTICS , 2009 .
[21] Konstantin Mischaikow,et al. Morse Theory for Filtrations and Efficient Computation of Persistent Homology , 2013, Discret. Comput. Geom..
[22] Afra Zomorodian,et al. Multicore Homology via Mayer Vietoris , 2014, ArXiv.
[23] Saugata Basu,et al. A Complexity Theory of Constructible Functions and Sheaves , 2013, Found. Comput. Math..
[24] J. Whitehead,et al. Combinatorial homotopy. II , 1949 .
[25] J. Curry. Sheaves, Cosheaves and Applications , 2013, 1303.3255.
[26] Dmitriy Morozov,et al. Zigzag persistent homology and real-valued functions , 2009, SCG '09.
[27] J. Graver,et al. Graduate studies in mathematics , 1993 .
[28] Michael Farber. Topological Complexity of Motion Planning , 2003, Discret. Comput. Geom..
[29] C. Weibel,et al. An Introduction to Homological Algebra: References , 1960 .
[30] Afra Zomorodian,et al. Localized Homology , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).
[31] R. Adler. The Geometry of Random Fields , 2009 .
[32] Vin de Silva,et al. Coverage in sensor networks via persistent homology , 2007 .
[33] M. Vybornov,et al. Sheaves on Triangulated Spaces and Koszul Duality , 1999 .
[34] Konstantin Mischaikow,et al. Chapter 9 – Conley Index , 2002 .
[35] R. Ghrist,et al. Euler Calculus with Applications to Signals and Sensing , 2012, 1202.0275.
[36] GhristRobert,et al. Discrete Morse Theory for Computing Cellular Sheaf Cohomology , 2016 .
[37] K. Borsuk. On the imbedding of systems of compacta in simplicial complexes , 1948 .
[38] Konstantin Mischaikow,et al. Discrete Morse Theoretic Algorithms for Computing Homology of Complexes and Maps , 2014, Found. Comput. Math..
[39] Tamal K. Dey,et al. Topological Persistence for Circle-Valued Maps , 2013, Discret. Comput. Geom..
[40] Afra Zomorodian,et al. Computing Persistent Homology , 2004, SCG '04.
[41] C. Weibel,et al. AN INTRODUCTION TO HOMOLOGICAL ALGEBRA , 1996 .
[42] Konstantin Mischaikow,et al. Conley index theory , 1995 .
[43] Daniel E. Koditschek,et al. Gait Transitions for Quasi-static Hexapedal Locomotion on Level Ground , 2009, ISRR.
[44] Dmitry N. Kozlov,et al. Discrete Morse Theory for free chain complexes , 2005, ArXiv.
[45] S. Smale,et al. On a theory of computation and complexity over the real numbers; np-completeness , 1989 .
[46] Jean-Pierre Bourguignon,et al. Mathematische Annalen , 1893 .
[47] P. Alexandroff,et al. Über den allgemeinen Dimensionsbegriff und seine Beziehungen zur elementaren geometrischen Anschauung , 1928 .
[48] Konstantin Mischaikow,et al. A Database Schema for the Analysis of Global Dynamics of Multiparameter Systems , 2009, SIAM J. Appl. Dyn. Syst..
[49] Manoj K. Chari. On discrete Morse functions and combinatorial decompositions , 2000, Discret. Math..
[50] Michael Robinson. The Nyquist theorem for cellular sheaves , 2013 .
[51] R. Forman. Morse Theory for Cell Complexes , 1998 .
[52] David Eppstein,et al. Bounds on the Complexity of Halfspace Intersections when the Bounded Faces have Small Dimension , 2011, SoCG '11.
[53] Herbert Edelsbrunner,et al. Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[54] R. Ho. Algebraic Topology , 2022 .
[55] Michael Farber. Collision Free Motion Planning on Graphs , 2004, WAFR.
[56] Joseph A. Goguen,et al. Sheaf semantics for concurrent interacting objects , 1992, Mathematical Structures in Computer Science.
[57] Gunnar E. Carlsson,et al. Topology and data , 2009 .
[58] P. Schapira,et al. Tomography of Constructible Functions , 1995, AAECC.
[59] Emil Sköldberg,et al. Morse theory from an algebraic viewpoint , 2005 .
[60] Pierre Schapira,et al. Operations on constructible functions , 1991 .