The Mathematics of Entanglement

These notes are from a series of lectures given at the Universidad de Los Andes in Bogota, Colombia on some topics of current interest in quantum information. While they aim to be self-contained, they are necessarily incomplete and idiosyncratic in their coverage. For a more thorough introduction to the subject, we recommend one of the textbooks by Nielsen and Chuang or by Wilde, or the lecture notes of Mermin, Preskill or Watrous. Our notes by contrast are meant to be a relatively rapid introduction into some more contemporary topics in this fast-moving field. They are meant to be accessible to advanced undergraduates or starting graduate students.

[1]  Daniel Cavalcanti,et al.  All quantum states useful for teleportation are nonlocal resources , 2012, 1207.5485.

[2]  Carlos Palazuelos,et al.  Superactivation of quantum nonlocality. , 2012, Physical review letters.

[3]  N. Regnault,et al.  Real-space entanglement spectrum of quantum Hall states , 2011, 1111.2810.

[4]  Francesco Buscemi,et al.  All entangled quantum states are nonlocal. , 2011, Physical review letters.

[5]  A. Plastino,et al.  Quantum entanglement in helium , 2012 .

[6]  Ronald de Wolf,et al.  Near-Optimal and Explicit Bell Inequality Violations , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[7]  C. Macchiavello,et al.  Multipartite entanglement in quantum algorithms , 2010, 1007.4179.

[8]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[9]  S. Wehner,et al.  The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics , 2010, Science.

[10]  Sandu Popescu,et al.  Dynamical quantum non-locality , 2010 .

[11]  R. Cleve,et al.  Nonlocality and communication complexity , 2009, 0907.3584.

[12]  D. Petz Quantum Information Theory and Quantum Statistics , 2007 .

[13]  M. Lewenstein,et al.  Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond , 2006, cond-mat/0606771.

[14]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[15]  C. Adami,et al.  Quantum entanglement of moving bodies. , 2002, Physical review letters.

[16]  L. A. F. Hermana Ciencia en red , 2002 .

[17]  S. Sachdev Quantum Phase Transitions , 1999 .

[18]  D. Gillespie,et al.  Introducción a la mecánica cuántica , 1990 .

[19]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[20]  J. A. Cruz Notas de clase , 1982 .

[21]  C. DeWitt-Morette,et al.  Techniques and Applications of Path Integration , 1981 .

[22]  Y. Aharonov,et al.  Modular variables in quantum theory , 1969 .

[23]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .