An Enhanced MPPT Method Combining Fractional-Order and Fuzzy Logic Control

A fractional-order fuzzy logic control (FOFLC) method for maximum power point tracking (MPPT) in a photovoltaic (PV) system is presented. By combining the robustness of fuzzy logic with the accuracy of fractional order, the proposed method can improve the tracking accuracy in weather variations compared with the conventional fuzzy MPPT. First, the fractional-order factor is carefully selected according to the dynamic range of the fuzzy controller. It takes a bigger alpha factor in the first place to expand the fuzzy domain and shortens the time of searching for the MPP. When the maximum power point is approached, it uses a smaller the alpha factor to contract the fuzzy domain and eliminates the oscillations at the MPP. Therefore, the FOFLC in a PV system has rapid dynamic responses under environment variations and high tracking accuracy of the maximum power point. Second, MATLAB/Simulink software is employed to simulate a PV power system and verify the proposed algorithm by various simulations. The enhanced MPPT algorithm has been implemented on a field programmable gate array (FPGA) board. Finally, a boost dc–dc converter experiment has been carried out to evaluate the system performance. The simulation and experiment results show that this method can improve the transient and steady-state performance simultaneously.

[1]  Gregorio Iglesias,et al.  Intra-annual wave resource characterization for energy exploitation: A new decision-aid tool , 2015 .

[2]  Her-Terng Yau,et al.  Using Self-Synchronization Error Dynamics Formulation Based Controller for Maximum Photovoltaic Power Tracking in Micro-Grid Systems , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[3]  Yu Zhang,et al.  MPPT Control for PV Generation System Based on an Improved Inccond Algorithm , 2012 .

[4]  Md Enamul Haque,et al.  A Simulated Annealing Global Maximum Power Point Tracking Approach for PV Modules Under Partial Shading Conditions , 2016, IEEE Transactions on Power Electronics.

[5]  Her-Terng Yau,et al.  Development of a Fractional Order Chaos Synchronization Dynamic Error Detector for Maximum Power Point Tracking of Photovoltaic Power Systems , 2015 .

[6]  Moin Hanif,et al.  Comparative Analysis of Different Single-Diode PV Modeling Methods , 2015, IEEE Journal of Photovoltaics.

[7]  Stephen J. Finney,et al.  A Maximum Power Point Tracking Technique for Partially Shaded Photovoltaic Systems in Microgrids , 2013, IEEE Transactions on Industrial Electronics.

[8]  Chyi Hwang,et al.  A note on time-domain simulation of feedback fractional-order systems , 2002, IEEE Trans. Autom. Control..

[9]  Chengbin Ma,et al.  Fractional-order control: Theory and applications in motion control [Past and present] , 2007, IEEE Industrial Electronics Magazine.

[10]  Zi-juan Yang,et al.  The research on application of variable universe fuzzy control to maximum power point tracking system , 2009, 2009 3rd International Conference on Power Electronics Systems and Applications (PESA).

[11]  I. Podlubny Fractional differential equations , 1998 .

[12]  Zhuo Meng,et al.  A scalable accuracy fuzzy logic controller on FPGA , 2015, Expert Syst. Appl..

[13]  K. L. Lian,et al.  A Maximum Power Point Tracking Method Based on Perturb-and-Observe Combined With Particle Swarm Optimization , 2014, IEEE Journal of Photovoltaics.

[14]  Ali M. Eltamaly,et al.  A comprehensive comparison of different MPPT techniques for photovoltaic systems , 2015 .

[15]  Maissa Farhat,et al.  A stable FLC-based MPPT technique for photovoltaic system , 2015, 2015 IEEE International Conference on Industrial Technology (ICIT).

[16]  Marcello Chiaberge,et al.  A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT , 2015, IEEE Transactions on Sustainable Energy.

[17]  A. Eltamaly Performance of smart maximum power point tracker under partial shading conditions of PV systems , 2015, 2015 IEEE International Conference on Smart Energy Grid Engineering (SEGE).

[18]  Boutaib Dahhou,et al.  Adaptive fuzzy controller based MPPT for photovoltaic systems , 2014 .

[19]  A. Sayal,et al.  MPPT techniques for photovoltaic system under uniform insolation and partial shading conditions , 2012, 2012 Students Conference on Engineering and Systems.

[20]  H. Yau,et al.  A New Fractional-Order Based Intelligent Maximum Power Point Tracking Control Algorithm for Photovoltaic Power Systems , 2015 .

[21]  Seyed Mohammad Sadeghzadeh,et al.  A high performance maximum power point tracker for PV systems , 2013 .

[22]  Mohamed A. Abdelwahed,et al.  An Enhanced MPPT Method Combining Model-Based and Heuristic Techniques , 2016, IEEE Transactions on Sustainable Energy.

[23]  Jian-Liung Chen,et al.  Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method , 2011 .

[24]  Mohammad Hassan Moradi,et al.  A Function-Based Maximum Power Point Tracking Method for Photovoltaic Systems , 2016, IEEE Transactions on Power Electronics.