An Experimental Study on Frequency Characteristics of the Microphone Array Covered with Kevlar in Closed Test Section Wind Tunnel

A Experimental study on frequency characteristics of the microphone array covered with Kevlar in closed test section wind tunnel. Microphones that are flush mounted in a closed test section wall of wind tunnel are subject to very high flow noise resulting from the turbulence in the wall boundary layer. At this time the microphones measure the strong hydrodynamic fluctuations generated by the flow. The phenomena are referred to a microphone self-noise and a method for reducing this has studied. In this paper the array that covered with acoustically transparent Kevlar sheet was designed and made to reduce the flow-induced self-noise. For the validation frequency characteristics of the Kevlar, the microphone array was installed on the wall and test was performed for white noise and sine wave of several frequencies using loudspeaker. In addition, the paper compared the signals as a tension of Kevlar. The results were presented that tend to decrease the sound pressure level at high frequency above 3500Hz according to existence of Kevlar. Fig. 1 Self-noise induced by the turbulence in the boundary layer of the wind tunnel 1)