EIT quantum memory with Cs atomic vapor for quantum communication

Quantum memory is a key device in the implementation of quantum repeaters for quantum communications and quantum networks. We demonstrated a quantum memory based on electromagnetically-induced transparency (EIT) in a warm cesium atomic cell. The quantum memory system can avoid the need for helium temperature apparatus and it is low cost for bulk scalability.

[1]  Lijun Ma,et al.  Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion , 2010, 1004.2686.

[2]  I. Walmsley,et al.  Towards high-speed optical quantum memories , 2009, 0912.2970.

[3]  S. Kröll,et al.  Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition. , 2001, Physical review letters.

[4]  Hai Xu,et al.  1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm. , 2007, Optics express.

[5]  N. Gisin,et al.  Quantum Communication , 2007, quant-ph/0703255.

[6]  D. Korystov,et al.  Quantum memory for squeezed light. , 2007, Physical review letters.

[7]  Félix Bussières,et al.  Broadband waveguide quantum memory for entangled photons , 2011, SUM 2011.

[8]  Yoon-Ho Kim,et al.  Atomic vapor quantum memory for a photonic polarization qubit , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[9]  A I Lvovsky,et al.  Decoherence of electromagnetically induced transparency in atomic vapor. , 2006, Optics letters.

[10]  J. Laurat,et al.  Mapping photonic entanglement into and out of a quantum memory , 2007, Nature.

[11]  I. Novikova,et al.  Optimal light storage in atomic vapor , 2008, 0805.3348.

[12]  Xiao Tang,et al.  Reducing noise in single-photon-level frequency conversion. , 2013, Optics letters.

[13]  Z. Dutton,et al.  Observation of coherent optical information storage in an atomic medium using halted light pulses , 2001, Nature.

[14]  Oliver Benson,et al.  Electromagnetically induced transparency in cesium vapor with probe pulses on the single-photon level. , 2010, Physical review letters.

[15]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[16]  Irina Novikova,et al.  Electromagnetically induced transparency‐based slow and stored light in warm atoms , 2012 .

[17]  M. Lukin,et al.  Storage of light in atomic vapor. , 2000, Physical Review Letters.

[18]  Bo Zhao,et al.  Efficient and long-lived quantum memory with cold atoms inside a ring cavity , 2012, Nature Physics.

[19]  Yoon-Ho Kim,et al.  Storage and retrieval of thermal light in warm atomic vapor , 2009, Optical Engineering + Applications.

[20]  I. Walmsley,et al.  Multi-pulse addressing of a Raman quantum memory: Configurable beam splitting and efficient readout , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[21]  S. A. Moiseev,et al.  Photon‐echo quantum memory in solid state systems , 2009 .

[22]  J. Cirac,et al.  Experimental demonstration of quantum memory for light , 2004, Nature.

[23]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[24]  D. Awschalom,et al.  A quantum memory intrinsic to single nitrogen-vacancy centres in diamond , 2011 .

[25]  Lijun Ma,et al.  Sequential time-bin entanglement generation using periodically poled KTP waveguide , 2009 .

[26]  Lijun Ma,et al.  Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector(1). , 2009, Optics express.

[27]  P. Lam,et al.  Multimodal properties and dynamics of gradient echo quantum memory. , 2008, Physical review letters.

[28]  D. Matsukevich,et al.  Storage and retrieval of single photons transmitted between remote quantum memories , 2005, Nature.

[29]  J. H. Müller,et al.  High quality anti-relaxation coating material for alkali atom vapor cells. , 2009, Optics express.

[30]  Dieter Schuh,et al.  Optically programmable electron spin memory using semiconductor quantum dots , 2004, Nature.

[31]  Jian-Wei Pan,et al.  Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion , 2011 .

[32]  M. Lukin,et al.  Quantum control of light using electromagnetically induced transparency , 2005 .

[33]  Jian-Wei Pan,et al.  Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated {sup 87}Rb vapor cell , 2009, 0901.3627.

[34]  I. Walmsley,et al.  Single-photon-level quantum memory at room temperature. , 2010, Physical review letters.

[35]  Lijun Ma,et al.  Up-conversion single-photon detector using multi-wavelength sampling techniques. , 2011, Optics express.

[36]  Lijun Ma,et al.  Single photon frequency up-conversion and its applications , 2012 .

[37]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.

[38]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[39]  Y. O. Dudin,et al.  A quantum memory with telecom-wavelength conversion , 2010 .

[40]  Jianming Wen,et al.  Optimal storage and retrieval of single-photon waveforms. , 2012, Optics express.

[41]  Jian-Wei Pan,et al.  Memory-built-in quantum teleportation with photonic and atomic qubits , 2007, 0705.1256.

[42]  B. Baek,et al.  1310 nm differential-phase-shift QKD system using superconducting single-photon detectors* , 2009 .

[43]  R. Ricken,et al.  Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories , 2013, Nature Communications.

[44]  K. Akiba,et al.  Storage and retrieval of nonclassical photon pairs and conditional single photons generated by the parametric down-conversion process , 2007, 0711.3377.