A dependency graph approach for the analysis of differential gene expression profiles.

A central aim of differential gene expression profile analysis is to provide an interpretation of given data at the level of biological processes and pathways. However, traversing descriptive data into context is not straightforward. We present a gene-centric dependency graph approach supporting an interpretation of omics profiles at the level of affected networks. The core of our dependency graph comprises data objects encoding the functional categorization of a particular gene, its tissue-specific reference gene expression, as well as known interactions and subcellular location of assigned proteins. On the basis of these genome, transcriptome, and proteome data we compute pair-wise object (gene) dependencies and interpret them as weighted edges in a dependency graph. Mapping of omics profiles on this graph can be used to identify connectors linking features of the omics list, in turn providing the basis for identification of subgraphs and motifs characterizing the cellular state under analysis. We exemplify this approach by analyzing differential gene expression data characterizing B-cell lymphoma and demonstrate the identification of B-cell lymphoma associated subgraphs.

[1]  Igor Jurisica,et al.  Online Predicted Human Interaction Database , 2005, Bioinform..

[2]  Pablo Villoslada,et al.  A computational analysis of protein-protein interaction networks in neurodegenerative diseases , 2008, BMC Systems Biology.

[3]  K. Basso,et al.  A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas , 2008, Molecular systems biology.

[4]  M. Gerstein,et al.  TopNet: a tool for comparing biological sub-networks, correlating protein properties with topological statistics. , 2004, Nucleic acids research.

[5]  Kohzoh Imai,et al.  Aberrant DNA methylation of p57KIP2 identifies a cell-cycle regulatory pathway with prognostic impact in adult acute lymphocytic leukemia. , 2003, Blood.

[6]  L. Staudt,et al.  The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. , 2002, The New England journal of medicine.

[7]  Paul Horton,et al.  Nucleic Acids Research Advance Access published May 21, 2007 WoLF PSORT: protein localization predictor , 2007 .

[8]  S. Sell,et al.  Leukemia , 2007, Stem Cell Reviews.

[9]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[10]  John Crowley,et al.  Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. , 2002, Blood.

[11]  Olga G. Troyanskaya,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm332 Data and text mining , 2022 .

[12]  Christian von Mering,et al.  STRING 7—recent developments in the integration and prediction of protein interactions , 2006, Nucleic Acids Res..

[13]  A. Owen,et al.  A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae) , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  I. Touw,et al.  Multiple pathways contribute to the hyperproliferative responses from truncated granulocyte colony-stimulating factor receptors , 2006, Leukemia.

[15]  Robert Hoffmann,et al.  HomoMINT: an inferred human network based on orthology mapping of protein interactions discovered in model organisms , 2005, BMC Bioinformatics.

[16]  Arno Lukas,et al.  Characterization of protein-interaction networks in tumors , 2007, BMC Bioinformatics.

[17]  Weiwei Zhong,et al.  Genome-Wide Prediction of C. elegans Genetic Interactions , 2006, Science.

[18]  Liang Yu,et al.  Proteasome-dependent autoregulation of Bruton tyrosine kinase (Btk) promoter via NF-kappaB. , 2008, Blood.

[19]  Eugene A. Kapp,et al.  Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly‐available database , 2005, Proteomics.

[20]  Sergei Maslov,et al.  Automatic Pathway Building in Biological Association Networks , 2006 .

[21]  R. Larson,et al.  Therapy-related myeloid leukaemia: a model for leukemogenesis in humans. , 2005, Chemico-biological interactions.

[22]  T. Barrette,et al.  ONCOMINE: a cancer microarray database and integrated data-mining platform. , 2004, Neoplasia.

[23]  Tao Xu,et al.  Atlas – a data warehouse for integrative bioinformatics , 2005, BMC Bioinformatics.

[24]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[25]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[26]  Jianmin Wu,et al.  Integrated network analysis platform for protein-protein interactions , 2009, Nature Methods.

[27]  Tsviya Olender,et al.  Human Gene-Centric Databases at the Weizmann Institute of Science: GeneCards, UDB, CroW 21 and HORDE , 2003, Nucleic Acids Res..

[28]  A. Valencia,et al.  Computational methods for the prediction of protein interactions. , 2002, Current opinion in structural biology.

[29]  A. Valencia,et al.  A gene network for navigating the literature , 2004, Nature Genetics.

[30]  Bassem A. Hassan,et al.  Gene prioritization through genomic data fusion , 2006, Nature Biotechnology.

[31]  Erich E. Wanker,et al.  Comparison of Human Protein-Protein Interaction Maps , 2007, German Conference on Bioinformatics.

[32]  Wyeth W. Wasserman,et al.  Gene Characterization Index: Assessing the Depth of Gene Annotation , 2008, PloS one.

[33]  Shailesh V. Date,et al.  A Probabilistic Functional Network of Yeast Genes , 2004, Science.

[34]  Matthew A. Hibbs,et al.  Finding function: evaluation methods for functional genomic data , 2006, BMC Genomics.

[35]  David Botstein,et al.  Relation of Gene Expression Phenotype to Immunoglobulin Mutation Genotype in B Cell Chronic Lymphocytic Leukemia , 2001, The Journal of experimental medicine.

[36]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[37]  Daniel C. Jupiter,et al.  A Visual Data Mining Tool that Facilitates Reconstruction of Transcription Regulatory Networks , 2008, PloS one.

[38]  B. Snel,et al.  Function prediction and protein networks. , 2003, Current opinion in cell biology.

[39]  Jiong Yang,et al.  PathFinder: mining signal transduction pathway segments from protein-protein interaction networks , 2007, BMC Bioinformatics.

[40]  Arno Lukas,et al.  Linking the ovarian cancer transcriptome and immunome , 2008, BMC Systems Biology.

[41]  B. Mayer,et al.  Transforming omics data into context: Bioinformatics on genomics and proteomics raw data , 2006, Electrophoresis.

[42]  John Quackenbush,et al.  Extracting biology from high-dimensional biological data , 2007, Journal of Experimental Biology.

[43]  Y. Zhang,et al.  IntAct—open source resource for molecular interaction data , 2006, Nucleic Acids Res..

[44]  Dennis B. Troup,et al.  NCBI GEO: mining tens of millions of expression profiles—database and tools update , 2006, Nucleic Acids Res..

[45]  Nan Guo,et al.  PANTHER version 6: protein sequence and function evolution data with expanded representation of biological pathways , 2006, Nucleic Acids Res..

[46]  Kelvin H Lee,et al.  Functional genomics and proteomics as a foundation for systems biology. , 2003, Briefings in functional genomics & proteomics.