Simple estimation of synchronization threshold in ensembles of diffusively coupled chaotic systems.

In this paper, we define a simple criterion of the synchronization threshold in the set of coupled chaotic systems (flows or maps) with diagonal diffusive coupling. The condition of chaotic synchronization is determined only by two "parameters of order," i.e., the largest Lyapunov exponent and the coupling coefficient. Our approach can be applied for both regular chaotic networks and arrays or lattices of chaotic oscillators with irregular, arbitrarily assumed structure of coupling. The main idea of the synchronization stability criterion is based on linear analysis of the ensembles of simplest dynamical systems. Numerical simulations confirm that such a linear approach approximates the synchronization threshold with high precision.

[1]  Carroll,et al.  Synchronous chaos in coupled oscillator systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. II: The Mapping Approach , 1983 .

[3]  Gade,et al.  Synchronization of oscillators with random nonlocal connectivity. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[5]  N. Tufillaro The effects of additive noise and drift in the dynamics of the driving on chaotic synchronization , 1994, chao-dyn/9411010.

[6]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .

[7]  Nikolai F. Rulkov,et al.  Designing a Coupling That Guarantees Synchronization between Identical Chaotic Systems , 1997 .

[8]  M. E. Shirokov,et al.  Chaotic synchronization in ensembles of coupled maps , 1997 .

[9]  Huzihiro Araki,et al.  International Symposium on Mathematical Problems in Theoretical Physics , 1975 .

[10]  T. Kapitaniak,et al.  Synchronization of chaos using continuous control. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  P. Grassberger,et al.  Symmetry breaking bifurcation for coupled chaotic attractors , 1991 .

[12]  Kapitaniak,et al.  Different types of chaos synchronization in two coupled piecewise linear maps. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[14]  T. Kapitaniak,et al.  MONOTONE SYNCHRONIZATION OF CHAOS , 1996 .

[15]  Louis M. Pecora,et al.  Synchronization stability in Coupled oscillator Arrays: Solution for Arbitrary Configurations , 2000, Int. J. Bifurc. Chaos.

[16]  L. Chua,et al.  A UNIFIED FRAMEWORK FOR SYNCHRONIZATION AND CONTROL OF DYNAMICAL SYSTEMS , 1994 .

[17]  Tomasz Kapitaniak,et al.  Synchronization of two chaotic oscillators via a negative feedback mechanism , 2003 .

[18]  Andrew G. Glen,et al.  APPL , 2001 .

[19]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[20]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[21]  Arkady Pikovsky,et al.  On the interaction of strange attractors , 1984 .

[22]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[23]  Yoshiki Kuramoto,et al.  In International Symposium on Mathematical Problems in Theoretical Physics , 1975 .

[24]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[25]  Kestutis Pyragas Predictable chaos in slightly perturbed unpredictable chaotic systems , 1993 .

[26]  Cerdeira,et al.  Coupled maps on trees. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  Michael Rosenblum,et al.  Synchronization and chaotization in interacting dynamical systems , 1995 .

[28]  Carroll,et al.  Driving systems with chaotic signals. , 1991, Physical review. A, Atomic, molecular, and optical physics.