Principally Quasi-Baer Ring Hulls

We show the existence of principally (and finitely generated) right FI-extending right ring hulls for semiprime rings. From this result, we prove that right principally quasi-Baer (i.e., right p.q.-Baer) right ring hulls always exist for semiprime rings. This existence of right p.q.-Baer right ring hull for a semiprime ring unifies the result by Burgess and Raphael on the existence of a closely related unique smallest overring for a von Neumann regular ring with bounded index and the result of Dobbs and Picavet showing the existence of a weak Baer envelope for a commutative semiprime ring. As applications, we illustrate the transference of certain properties between a semiprime ring and its right p.q.-Baer right ring hull, and we explicitly describe a structure theorem for the right p.q.-Baer right ring hull of a semiprime ring with only finitely many minimal prime ideals. The existence of PP right ring hulls for reduced rings is also obtained. Further application to ring extensions such as monoid rings, matrix, and triangular matrix rings are investigated. Moreover, examples and counterexamples are provided.

[1]  W. Burgess,et al.  On Extensions of Regular Rings of Finite Index by Central Elements , 1997 .

[2]  G. Birkenmeier,et al.  Quasi-Baer ring extensions and biregrular rings , 2000, Bulletin of the Australian Mathematical Society.

[3]  Tsit Yuen Lam,et al.  Lectures on modules and rings , 1998 .

[4]  G. Birkenmeier,et al.  Hulls of Ring Extensions , 2010, Canadian Mathematical Bulletin.

[5]  Joseph Kist,et al.  Minimal Prime Ideals in Commutative Semigroups , 1963 .

[6]  Y. Utumi On quotient rings , 1956 .

[7]  Gary F. Birkenmeir Idempotents and completely semiprime ideals , 1983 .

[8]  G. Birkenmeier,et al.  Triangular matrix representations of ring extensions , 2003 .

[9]  Bo Stenström,et al.  Rings of Quotients: An Introduction to Methods of Ring Theory , 1975 .

[10]  G. Birkenmeier,et al.  Ring hulls and applications , 2006 .

[11]  G. Birkenmeier,et al.  Hulls of semiprime rings with applications to C∗-algebras , 2009 .

[12]  S. Jain,et al.  Advances in Ring Theory , 1997 .

[13]  Bruno J. Müller,et al.  Modules in Which Every Fully Invariant Submodule is Essential in a Direct Summand , 2002 .

[14]  G. Birkenmeier,et al.  Polynomial extensions of Baer and quasi-Baer rings , 2001 .

[15]  K. Oshiro On torsion free modules over regular rings II , 1973 .

[16]  G. Birkenmeier,et al.  PRINCIPALLY QUASI-BAER RINGS , 2001 .

[17]  G. Birkenmeier,et al.  Semicentral Reduced Algebras , 2001 .

[18]  Joachim Lambek,et al.  Lectures on Rings and Modules , 1976 .

[19]  D. Passman,et al.  The algebraic structure of group rings , 1977 .

[20]  H. Heatherly,et al.  Triangular Matrix Representations , 2000 .

[21]  G. Birkenmeier,et al.  The structure of rings of quotients , 2009 .

[22]  Nathan Divinsky,et al.  Rings and Radicals , 1965 .