Integration of thin n-type nc-Si:H layers in the window-multilayer stack of heterojunction solar cells

[1]  C. Ballif,et al.  Bottom-Up and Top-Down Approaches for Identifying and Mitigating Electrical Losses in Silicon Heterojunction Solar Cells , 2022, IEEE Journal of Photovoltaics.

[2]  U. Rau,et al.  Function Analysis of the Phosphine Gas Flow for n-Type Nanocrystalline Silicon Oxide Layer in Silicon Heterojunction Solar Cells , 2021, ACS Applied Energy Materials.

[3]  C. Ballif,et al.  Influence of the Dopant Gas Precursor in P-Type Nanocrystalline Silicon Layers on the Performance of Front Junction Heterojunction Solar Cells , 2021, IEEE Journal of Photovoltaics.

[4]  M. Green,et al.  Solar cell efficiency tables (Version 58) , 2021, Progress in Photovoltaics: Research and Applications.

[5]  M. Köhler,et al.  Transparent-conductive-oxide-free front contacts for high-efficiency silicon heterojunction solar cells , 2021, Joule.

[6]  J. Krč,et al.  Numerical Analysis of Selective ITO/a-Si:H Contacts in Heterojunction Silicon Solar Cells: Effect of Defect States in Doped a-Si:H Layers on Performance Parameters , 2021, IEEE Journal of Photovoltaics.

[7]  M. Hermle,et al.  Influence of TCO and a-Si:H Doping on SHJ Contact Resistivity , 2021, IEEE Journal of Photovoltaics.

[8]  Lei Zhao,et al.  Synergistic effect of CO2 and PH3 on the properties of n-type nanocrystalline silicon oxide prepared by plasma-enhanced chemical vapor deposition , 2021, Journal of Materials Science: Materials in Electronics.

[9]  C. Ballif,et al.  Hole-Selective Front Contact Stack Enabling 24.1%-Efficient Silicon Heterojunction Solar Cells , 2021, IEEE Journal of Photovoltaics.

[10]  C. Ballif,et al.  Optimization of front SiNx/ITO stacks for high-efficiency two-side contacted c-Si solar cells with co-annealed front and rear passivating contacts , 2021 .

[11]  Hiroshi Umishio,et al.  Nanocrystalline‐silicon hole contact layers enabling efficiency improvement of silicon heterojunction solar cells: Impact of nanostructure evolution on solar cell performance , 2020, Progress in Photovoltaics: Research and Applications.

[12]  Hui Yan,et al.  25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers , 2020 .

[13]  B. Stannowski,et al.  Versatility of Nanocrystalline Silicon Films: from Thin-Film to Perovskite/c-Si Tandem Solar Cell Applications , 2020, Coatings.

[14]  M. Zeman,et al.  The role of heterointerfaces and subgap energy states on transport mechanisms in silicon heterojunction solar cells , 2020, Progress in Photovoltaics: Research and Applications.

[15]  C. Ballif,et al.  Lateral transport in silicon solar cells , 2020 .

[16]  M. Zeman,et al.  Doped hydrogenated nanocrystalline silicon oxide layers for high‐efficiency c‐Si heterojunction solar cells , 2020, Progress in Photovoltaics: Research and Applications.

[17]  Z. Holman,et al.  Passivation, conductivity, and selectivity in solar cell contacts: Concepts and simulations based on a unified partial-resistances framework , 2019, Journal of Applied Physics.

[18]  Thomas G. Allen,et al.  Passivating contacts for crystalline silicon solar cells , 2019, Nature Energy.

[19]  C. Ballif,et al.  Rear-emitter silicon heterojunction solar cells with atomic layer deposited ZnO:Al serving as an alternative transparent conducting oxide to In2O3:Sn , 2019, Solar Energy Materials and Solar Cells.

[20]  M. Döbeli,et al.  Zr-doped indium oxide electrodes: Annealing and thickness effects on microstructure and carrier transport , 2019, Physical Review Materials.

[21]  B. Stannowski,et al.  Effect of front TCO on the performance of rear-junction silicon heterojunction solar cells: Insights from simulations and experiments , 2019, Solar Energy Materials and Solar Cells.

[22]  Angela N. Fioretti,et al.  Low-Temperature $p$-Type Microcrystalline Silicon as Carrier Selective Contact for Silicon Heterojunction Solar Cells , 2019, IEEE Journal of Photovoltaics.

[23]  Angela N. Fioretti,et al.  Paths for maximal light incoupling and excellent electrical performances in silicon heterojunction solar cells , 2019, 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC).

[24]  B. Stannowski,et al.  ITO-Free Silicon Heterojunction Solar Cells With ZnO:Al/SiO2 Front Electrodes Reaching a Conversion Efficiency of 23% , 2019, IEEE Journal of Photovoltaics.

[25]  M. Zeman,et al.  Theoretical evaluation of contact stack for high efficiency IBC-SHJ solar cells , 2018, Solar Energy Materials and Solar Cells.

[26]  C. Ballif,et al.  Silicon oxide treatment to promote crystallinity of p-type microcrystalline layers for silicon heterojunction solar cells , 2018 .

[27]  B. Stannowski,et al.  Ultra-thin nanocrystalline n-type silicon oxide front contact layers for rear-emitter silicon heterojunction solar cells , 2018, Solar Energy Materials and Solar Cells.

[28]  V. Smirnov,et al.  Versatility of doped nanocrystalline silicon oxide for applications in silicon thin-film and heterojunction solar cells , 2018 .

[29]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[30]  B. Rech,et al.  Nanocrystalline silicon emitter optimization for Si‐HJ solar cells: Substrate selectivity and CO2 plasma treatment effect , 2017 .

[31]  A. Fejfar,et al.  Profilometry of thin films on rough substrates by Raman spectroscopy , 2016, Scientific Reports.

[32]  S. Bowden,et al.  ITO/SiOx:H stacks for silicon heterojunction solar cells , 2016 .

[33]  C. Ballif,et al.  Strategies for Doped Nanocrystalline Silicon Integration in Silicon Heterojunction Solar Cells , 2016, IEEE Journal of Photovoltaics.

[34]  D. Adachi,et al.  Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency , 2015 .

[35]  T. Shinagawa,et al.  Rear-emitter Si heterojunction solar cells with over 23% efficiency , 2015 .

[36]  A. Cuevas,et al.  Charge Carrier Separation in Solar Cells , 2015, IEEE Journal of Photovoltaics.

[37]  M. Hermle,et al.  TCO work function related transport losses at the a-Si:H/TCO-contact in SHJ solar cells , 2014 .

[38]  C. Ballif,et al.  Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering , 2012 .

[39]  C. Ballif,et al.  Current Losses at the Front of Silicon Heterojunction Solar Cells , 2012, IEEE Journal of Photovoltaics.

[40]  S. Guha,et al.  Phosphorus and Boron Doping Effect on Nanocrystalline Formation in Hydrogenated Amorphous and Nanocrystalline Mixed-phase Silicon Thin Films , 2009 .

[41]  H. Fujiwara,et al.  Real time spectroscopic ellipsometry studies of the nucleation and growth of p-type microcrystalline silicon films on amorphous silicon using B2H6, B(CH3)3 and BF3 dopant source gases , 1999 .

[42]  F. Finger,et al.  Structure and growth of hydrogenated microcrystalline silicon : investigation by transmission electron microscopy and Raman spectroscopy of films grown at different plasma excitation frequencies , 1997 .